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1 Introduction

A central theme in the economics of information concerns the ability of agents to earn
rents because they have private information. For example, the buyer of a good may be
able to obtain a surplus because the seller does not know how much the good is worth to
the buyer.

However, Crémer and McLean (1988) have shown that, when there are multiple poten-
tial buyers for a good and these buyers have quasilinear utility functions with correlated
private values, then, under certain conditions, in a Bayesian setting, a seller can extract all
the surplus from the sale of his good, i.e. all information rents can be made to disappear.
Specifically, if the potential buyers have only finitely many types, a Bayesian incentive
mechanism that extracts all the potentially available surplus from buyers can be designed
if and only if, for each agent i and each type t; of this agent, the vector of probabilities that
agent i assigns to different constellations of the other agents” types when his own type is
t; cannot be represented as a convex combination of the vectors of beliefs that he has at
types other than ¢;.

McAfee and Reny (1992) extended the analysis of Crémer and McLean (1988) to the
case where each agent’s type set is the unit interval and where each agent’s beliefs about
other agents’ types are given by a probability distribution with a continuous density func-
tion. They showed that (approximately) full surplus extraction can be obtained if and only
if the density functions that represent agents’ beliefs satisfy a function space version of the
Crémer-McLean condition.

Our paper makes three contributions to this literature. First, we extend the analysis
of McAfee and Reny (1992) to allow for arbitrary abstract (Harsanyi) type spaces, rather
than naive type spaces in which “types” and payoff parameters are the same so that beliefs
depend only on payoff parameters. We give a necessary and sufficient condition for full
surplus extraction in an arbitrary abstract type space (with arbitrary beliefs) and call it
the generalized McAfee-Reny condition. This condition coincides with the McAfee-Reny
condition if the mapping from abstract types to payoff parameters and beliefs is injective,
but otherwise it is slightly weaker.

Second, we show that full surplus extraction is generic in the sense that, for a given
type space T; of agent i, the generalized McAfee-Reny condition holds for a residual set,
i.e., for a countable intersection of open and dense sets, of continuous functions mapping
types into payoff parameters and beliefs. For models with a continuum of types, generic-



ity of full surplus extraction has been a matter of dispute.! On the one hand, Heifetz and
Neeman (2006) have suggested that full surplus extraction is generically impossible.> On
the other hand, Chen and Xiong (2013) have shown that in a particular class of models,
approximately full surplus extraction is generically possible. Our result is both stronger
and more general than that of Chen and Xiong (2013). It is also "topology-free” in the
sense that we do not specify a topology on beliefs but only require the topology on beliefs
to by induced by a metric that is a convex function.

We use ideas from embedding theory. An embedding is a continuous injective func-
tion from a space X to a space Y. The classical embedding theorem asserts that, if X is a
compact finite-dimensional metric space and Y is a metric space with a sufficiently high
dimension, the set of embeddings is residual in the space of continuous functions from
X to Y, endowed with the uniform topology.3 The McAfee-Reny condition for surplus
extraction is similar to, but substantially stronger than injectiveness. Therefore we cannot
use the embedding theorem itself but need a new mathematical result. The proof of this
result is similar to the proof of the embedding theorem but makes essential use of the fact
that, in a model with a continuum of types, the space of beliefs, i.e. probability measures
over constellations of the other agents’ types, is infinite-dimensional.

The third contribution of this paper extends our analysis to the universal type space,
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i.e. the space that is obtained if agents” “types” are defined by their payoff parameters
and their hierarchies of beliefs about other agents” payoff parameters, beliefs about other
agents’ payoffs and first-order beliefs, beliefs about other agents” payoffs, first-order and
second-order beliefs... etc. In this setting, an agent’s belief hierarchy determines a proba-
bility measure over the possible constellations of the other agents’ payoff parameters and
belief hierarchies. The induced mapping from “types” of agent i to beliefs over the other
agent’s “types” violates the generalized McAfee-Reny condition if the domain is taken

to be the universal types space as a whole, but the restriction of this mapping to a sub-

IFor models with finitely many types, as in Crémer and McLean (1988), genericity of full surplus extraction
is automatically obtained if the set of other agents’ types is sufficiently large.

2Barelli (2009) also makes this claim, but Chen and Xiong (2011) show that his analysis involves an error.

3In Gizatulina and Hellwig (2014), we used this theorem to show that injective belief functions are generic
in the space of continuous functions from agents’ types to their beliefs. If a belief function is injective, then,
regardless of how the agent’s payoff parameters depend on his type, his payoff parameters can be inferred
from his beliefs. As was shown by Neeman (2004) and Heifetz and Neeman (2006), this so-called BDP prop-
erty ("beliefs determine preferences”) is necessary for full surplus extraction; see also Section 2.1 below. The
relation between Heifetz and Neeman (2006) and our work is further discussed in Section 4.1 below.



set of the universal type space may satisfy this condition. We show that the generalized
McAfee-Reny condition holds on a given subset of the universal type space if and only if
it holds for all abstract type spaces that generate constellations of payoff parameters and
belief hierarchies in the given subset of the universal type space. We also show that the set
of compact subsets of the universal type space that satisty the generalized McAfee-Reny
condition is a residual subset of the set of all compact subsets of the universal type space.

Genericity results are highly sensitive to the topologies that are used. As indicated
above, we do not actually specify any particular topologies but give qualitative conditions
on the topologies. These conditions are met by all the topologies that have been proposed
in the recent literature.* For example, our genericity result for full surplus extraction in
the universal type space holds regardless of whether the universal type space is given the
product topology, as in Mertens and Zamir (1985), or the uniform strategic topology, as in
Dekel, Fudenberg, and Morris (2006).

Our results contrast with the suggestion of Heifetz and Neeman (2006) that in arbi-
trary infinite type spaces full surplus extraction will only be possible in exceptional cases.
The difference between their analysis and ours is explained in detail in Section 4.1 below.
Despite the difference between their assessment of genericity and ours, we do not disagree
with their assessment that full surplus extraction is unlikely in the real world. However,
in our view, the inability to extract surplus is due to the mechanism designer’s lack of
information about the participants” belief mappings, rather than the exceptional nature
of belief mappings supporting full surplus extraction. In any given situation, it seems
quite unlikely that a mechanism designer should know the participants” belief functions
as precisely as he must in order to fully exploit the dependence of beliefs on types for sur-
plus extraction. This lack of information about the participants” belief functions should
be dealt with on its own terms, for example by a robustness requirement along the lines
of Bergemann and Morris (2005).

As we already mentioned, Chen and Xiong (2013) also have a result showing that full
surplus extraction is generically possible. They use a very different approach, defining
the FSE property as a property of priors and relying on approximations by finite type
spaces, in which the Crémer-McLean result applies. Their approach works for allocation
problems and payment functions that allow for the exclusion of individuals but cannot
be used if exclusion is not feasible, for example if the allocation problem involves the

4For abstract type spaces, see Engl (1995), for the universal type space, see, in particular, Dekel, Fudenberg,
and Morris (2006), and Chen, DiTillio, Faingold, and Xiong (2010).



provision of a non-excludable public good. Their approach also cannot be used if the
space of beliefs over constellations of other agents’ types has a topology under which the
measures with finite supports are not dense, such as the topology of weak convergence
that is induced if the spaces of the other agents’ types have the uniform strategic topology
of Dekel, Fudenberg, and Morris (2006) and Chen, DiTillio, Faingold, and Xiong (2010).

In the following, Section 2 presents our results for abstract type space. Sections 2.1
and 2.2 introduce the McAfee-Reny condition and the generalized McAfee-Reny condi-
tion for full surplus extraction in naive type spaces and in arbitrary abstract type spaces.
Section 2.3 presents the basic genericity results for these conditions. Section 2.4 provides
a genericity result for common priors generating belief functions that admit full surplus
extraction. Section 2.5 proves the main genericity theorem.

Section 3 presents our results for the universal type space. Following an introduction
of the universal type space in Section 3.1, Section 3.2 discusses the feasibility of full surplus
extraction as a property of compact subsets of the universal type space. Section 3.3 gives
a genericity result for compact subsets that admit full surplus extraction, Section 3.4 a
genericity result for common priors on the universal type space.

Section 4 relates our analysis to that of Heifetz and Neeman (2006), and Chen and
Xiong (2013). Section 5 contains some concluding remarks.

2 Full Surplus Extraction in Abstract-Type-Space Models

21 The McAfee-Reny Condition

McAfee and Reny (1992) consider the following problem: Suppose that a game of incom-
plete information between agentsi = 1, ..., I has a Bayes-Nash equilibrium in which agent
i obtains the payoff

7ti(t, . tr), (1)

where t1,..., t; are different agents’ types. Is it possible to design incentive-compatible
systems of participation fees that extract this surplus from each agent?”

5In Crémer and McLean (1988) and McAfee and Reny (1992), the function 7; indicates the equilibrium
payoff from the truth-telling equilibrium of a second-price auction. As was pointed out to us by a referee,
there is no need to restrict the analysis to payoff functions resulting from dominant-strategy equilibria. It is
however necessary to assume that 71; is continuous.



For any i, the type t; of agent i is an element of a metric space T;. Given the type t;,
the belief of agent i if given by a probability measure b;(t;) about the other agents’ types.
The belief b;(t;) is an element of the space M (T-;) of probability measures on the product
space T_; := gTj Given b;(t;), the agent’s expected payoff from participating in the

Fall

game with the equilibrium payoff function 7; is given as

ﬁi(tl’> = / 7T,‘<t1,..., t1> bi(dt_i|tl’>. 2)

McAfee and Reny (1992) consider a system of participation fees with the following
structure. Each agent i can choose one out of N; fee schedules za, . zé\,i, which make the
fee he has to pay depend on the other agents’ types. Thus, if agent i chooses the schedule
z\,, his payment will be z/, (_;). Given his type t; and his belief b;(t;), his expected payment
under the fee schedule z,, is

20(t)) = [ (1) bildtln) ©
and the agent may be presumed to choose the schedule with the smallest expected pay-
ment Z,(t;). His actual expected payment is thus equal to

Z,‘(bi(ti)) = min(zﬁ (bi(ti) ), ey Zé\]i (bl (tl))) 4)

The belief function b; : T; — M(T_;) is said to admit full surplus extraction in the sense

of McAfee and Reny (1992) if and only if, for every continuous function 7; : T; — R4 and

every ¢ > 0, there exists a system zi, ..., zé\,l_ of participation fee schedules for agent i such
that the induced expected payment Z;(b;(t;)) as given by (3) and (4) satisfies

() —e < Zi(bi(t)) < (k) )

for all t; € T;.° Whereas the surplus that can be extracted from agent i depends on the

Condition (5) provides for approximate rather than full surplus extraction. As explained by McAfee and
Reny, exact surplus extraction is not to be expected. For example, if the belief function b; has a continuous
density, one can find an expected-payoff function 7t; for which exact surplus extraction is not possible, i.e.
there is no system of fee schedules z}, ..., zj, such that min(Z (t), .., Zy, (t;)) = 7;(t;) for all t;. However,
since the choice of ¢ in (5) is arbitrary, the divergence from full surplus extractions can be made arbitrarily
small. Chen and Xiong (2013) have a different and somewhat weaker notion of approximate, rather than full
surplus extraction. Whereas McAfee and Reny (1992) define the FSE property type by type, Chen and Xiong
(2013) define the FSE property in terms of ex ante expected surplus, as a property of priors assigning small
probabilities to the set of types for which the unrealized or unextracted surplus is significant.



functions b; and 7; jointly, the FSE property requires full surplus extraction for all contin-
uous 7t; and therefore pertains to the belief function only.

McAfee and Reny (1992) give a necessary and sufficient condition under which a belief
function has the FSE property. The following theorem extends their result to the present,
more general formulation.”

THEOREM 2.1 Assume that T; is compact. Assume also that the belief function b; maps T; con-
tinuously into M(T_;) where M(T_;) is endowed with a topology that is at least as fine as the
topology of weak convergence of probability measures. Then b; admits full surplus extraction if
and only if, for every t; € T; and every probability measure y; on Tj,

v, (i) = @u,(0r,) implies p; = 6, ()

where 03, is the degenerate measure that assigns all mass to the the singleton {t;} and @y, (y;) is
defined so that

@, (Blpi) = /T bi(Blt;)pi(dt;) (6)

1

for any measurable set B C T_;.

The proof of Theorem 2.1 is sketched in the appendix. The argument is by and large
the same as in McAfee and Reny (1992).

The McAfee-Reny condition (*) can be interpreted as an extended screening condition.
For any belief function b; and any measure y; € M(T_;), the measure ¢, (y;) indicates the
beliefs that agent i would have about the other agents’ types if he thought that his own
type was distributed as y;. Given the assumption that each agent knows his own type, the
notion of agent i’s forming beliefs about the other agents’ types on the basis that his own
type is distributed as y may seem strange This notion is natural though if we replace the
type space T; by the space M (T;) of probability measures on T; and if we think about an
extended type of agent i as measure y; on T;. If the measure y; is nondegenerate, the agent
knows his extended type but has only probabilistic beliefs about his own type (and by
implication, his payoff type and his belief type).

"The result in McAfee and Reny (1992) actually assumes that T; is the unit interval and that, for any t; € T;,
the belief b;(t;) has a density function f;, : T; x T_; — R that is jointly continuous in ¢; and ¢_;. However,
McAfee and Reny (1992) also note, without proof, that their result holds whenever T; is a compact metric
space.



The McAfee-Reny condition is then equivalent to the requirement that the beliefs that
are associated with any degenerate extended type, i.e. any measure on T; that is concen-
trated at a singleton, must be distinguishable from the beliefs that are associated with any
other extended type. This requirement is stronger than injectiveness of the belief function
on the original type space T; but weaker than injectiveness of the belief function on the
extended type space M (T;); it does not exclude the possibility that the same beliefs might
be associated with two nondegenerate extended types.®

2.2 The Generalized McAfee-Reny Condition

We now turn to more general incomplete-information models of the form
T = {Ti/ 61'(.),171'(.)}1(:1, (7)

where, for any i, T; is an abstract (Harsanyi) type space, ©; is a metric space, the set of
payoff parameters for agent 7, 6, : T; — ©;, is a function that indicates how the payoff
parameters of agent i depend on the abstract type t;, and b; : T; — M(T_;) is the agent’s
belief function.

The McAfee-Reny model of the preceding section corresponds to the special case
where payoff parameter and abstract types coincide, i.e. where ®; = T; and 6;(.) is the
identity mapping. In this special case, beliefs depend only on payoff parameters.

In the more general formulation, equilibrium payoffs from a game would take the
form

mi(ty, ., tr) = 117 (61(t1), ..., 01(t1), b1(t1), ...b1 (1)), 8

and the expected payoff of agent i with belief b;(t;) would take the form

(i) = 77 (0i(t:), bi(t:)), )

8McAfee and Reny (1992) themselves give an interpretation of (*) that is based on the notion that y can be

thought of as a prior on T;. In this case, a violation of (*) would indicate that, relative to the prior y, agent
i’s learning that his own type is t; does not provide him with any new information about the other agents’
types. This explanation however is problematic if the measure y does not have ¢; in its support, for example,
if y is a degenerate measure that assigns all mass to t; # t;. Moreover, the interpretation of j as a prior
raises the question of how to interpret the requirement that condition (*) hold for all measures other than the
degenerate measure with unit mass at t;.



so that the abstract type t; of agent i affects the agent’s expected payoff 77;(t;) only through
its impact on the payoff parameter 6;(t;) and the belief b;(t;).’

If the functions 77, 6;, and b; are continuous, then obviously the expected-payoff func-
tion 77; in (9) belongs to the class of functions considered in the McAfee-Reny definition of
the FSE property, By Theorem 2.1 therefore, (approximately) full surplus extraction from
agent i is still possible if the belief function b; satisfies the McAfee-Reny condition.

However, if all payoff functions take the form (8), a definition of the FSE property that
requires surplus extraction for all payoff functions of the form (1), is too strong.10 We
therefore introduce a less demanding condition and refer to it as the FSE* property. A pair
(6:(+),bi(+)) of functions relating abstract types to payoff parameters and beliefs has the
FSE* property if and only if, for every continuous function 7} : ®; x M(T_;) — R and
every ¢ > 0, there exists a system zi, ..., zé\[i of participation fee schedules for agent i such
that the induced expected payment Z;(b;(t;)) as given by (3) and (4) satisfies

77 (6:(£:), bi(t) — e < Zi(bi(t:)) < 77 (6:(t:), bi(t:)) (10)

forallt; € T;.!!
Trivially, a pair (6;(-),b;(-)) has the FSE* property if b;(-) has the FSE property. The
converse is true if and only if the map

ti — (0i(t;), bi(t;)) (1)

is injective, or, equivalently, if the type space T; is non-redundant, i.e. no two distinct
types generate the same pair of payoff parameters and beliefs.
The following result adapts Theorem 2.1 to the present, more general setting.

9Typically the payoff 7t; (1, ..., ;) and expected payoff 7%;(t;) also depend on the functions 6;(-) and b;(-) as
these functions determine the participants’ choices of strategies in whatever game they are playing. However
this dependence does not matter for the possibility of surplus extraction. Therefore we do not make it explicit.
10For example, if T; = [0,1] but all §;(.) and b;(.) map into two different payoff values and three different
belief values, the strong injectivity property of b; : T; — M (T_;) is not necessary to extract surplus from at
most 6 different pairs of payoffs and beliefs.

1 With arbitrary abstract type spaces, one may have reservations about participation fee schedules z,
that condition on the other agents” abstract types. These types may not be observable and verifiable. To take
account of this objection, one can have the participation fee schedules condition on verifiable messages ()
that may but need not reflect the other agents’ payoff parameters and/or beliefs. Expected payments then
depend on b;(t;) through the induced distribution b;(t;) o m:} (-) of message vectors, where, fort_; € T_;,
m_;(t;) = (mj(t;))ji- Our analysis goes through unchanged, except that the assumption below about type
spaces having more than finitely many elements must be replaced by an assumption that the ranges of the
mappings m;,i = 1, ..., I, have more than finitely many elements.



THEOREM 2.2 Assume that T; is compact. Assume also that the map (11) maps T; continuously
into the space ®; x M(T_;) where M(T_;) is endowed with a topology that is at least as fine as
the topology of weak convergence of probability measures. Then the pair (0;(-), b;(-)) has the FSE*
property if and only if, for every t; € T; and every probability measure y on T;,

ou, (1) = @, (67,) implies po (6;(-),bi(-)) ™" = 86,5 p:(5)) (**)

where 8y, () b,(7)) 1S the degenerate measure that assigns all mass to the the singleton { (0;(;), bi(f;)) }
and @y, (1) is defined as in Theorem 2.1.

Proof. If T; is compact, the range R(6;(-), b;(-)) of the continuous function (11), a subset
of the metric space ©; x M(T-;), is also compact. We may think of R(6;(-),b;(-)) as a
type space in its own right and of the projection from R(6;(-), b;(-)) to M(T_;) as a belief
mapping. One easily verifies that the pair (6;(-), b;(-)) has the FSE* property if and only
if the projection from R(6;(-), b;(-)) to M(T_;) has the FSE property as defined in Section
2.1. By Theorem 2.1, the projection from R(6;(-), b;(-)) to M(T-;) has the FSE property
if and only if, for every pair (8;,b;) € R(6;(-),b;(-)) and every probability measure u* on
R(6:(-), bi(+)),

QDPYOJ'M(T_,-)(‘”*) = qDPrO]'M(T_n((S((;f,Ei)) implies p* = 5(91',5{)' (12)

We further note that, by the definition of R(6;(-), b;(+)), a pair (6;, b
if and only if there exists f; € T; such that (0;,b;) = (6;(F),b
belongs to M(R(6;(+),b;(+))) if and only if there exists y €
(6:(-), bi(-)) . Moreover, (8;,b;) = (6:(F:), bi(F;)) and p* = po (6

) belongs to R(6;(-), b;(-))
f;)), and a measure p*

i
M(T;) such that p* = po
(), bi(+)) 7! imply
goprojM(Tii)(é(B_i,Ei)) = @y, (5fl-) and ¢PVOjM(T7i)(y*) = QDbl(]l)

and, hence,
Porojary (H) = Pprojugr ) (O, 5)) if and only if ¢y, (1) = i, ().
Thus, (12) is equivalent to condition (**). m

We refer to condition (**) as the generalized McAfee-Reny condition. This condition is
obviously weaker than the McAfee-Reny condition itself. The following corollary pro-
vides a decomposition of condition (**) that makes the underlying structure more trans-

parent.

10



COROLLARY 2.3 Under the assumptions of Theorem 2.2, the function (6;(-),b;(+)) from T; to
©; x M(T_;) has the FSE* property if and only if the following two conditions hold:
(a) for every t; € T; and every probability measure y on T;,

@u, (1) = @u,(05,) implies @y, (1) 0 b = by,5,),

i.e. all types t; in the support of y have the same beliefs b;(t;) = b;(t;);
(b) for any two types t; and t} in T;

Qi(ti) 7& Ql(t;) zmplzes bi(ti) 7& bl(t:)

Proof. Suppose that the pair (6;(-), b;(-)) satisfies (a) and (b). If {; € T; and u € M(T;) are
such that ¢y, (#) = @y,(J%,), then (a) implies that all types in in the support of y have beliefs
equal to b;(f;). By (b), it follows that all types in the support of i have payoff parameters
equal to 0;(f;). The measure y is thus concentrated on the set of types with payoff-belief
pairs equal to (0;(f;), b;(f;)). Thus, if (a) and (b) hold, the generalized McAfee-Reny con-
dition is satisfied.

Conversely, if the generalized McAfee-Reny condition holds, (a) follows immediately.
To see that (b) must also hold, suppose that there exist two types t; and . in T; such
that Gi(ti) 7& 91(1’:) and bi(ti) = bl(t;) Let u = %sz‘ + %51‘; Then gl)bl(]/l) = ¢bi(5fi) but
po (0;(+),bi(-)" ! # 8(6,(1) (7)), 1-e. the generalized McAfee-Reny condition does not
hold. =m

Condition (b) corresponds to what Neeman (2004) and Heifetz and Neeman (2006)
call the BDP property - "beliefs determine preferences”: If one knows an agent’s beliefs, then
one can infer the agent’s payoff parameters. The necessity of this property for full surplus
extraction was originally established by Neeman (2004) and Heifetz and Neeman (2006).

Condition (a) can be interpreted as a screening condition, like the McAfee-Reny con-
dition but somewhat weaker. Whereas the McAfee-Reny condition requires that the belief
bi(t;) of any type t; € T; must be distinguishable from the beliefs that are associated with
any extended type, the generalized McAfee-Reny condition only requires that b;(#;) must
be distinguishable from any extended type that assigns positive probability to payoff pa-
rameters different from 6;(f;).

11



2.3 Genericity of the FSE and FSE* Properties

We study the genericity of full surplus extraction in terms of the set of belief functions hav-
ing the FSE property. Because a pair (6;(-), b;(-)) of functions mapping abstract types into
payoff parameters and beliefs has the FSE* property whenever b;(-) has the FSE property,
any genericity result for belief functions b; that have the FSE property is easily translated
into a genericity result for pairs (6;(-), b;(-)) that have the FSE* property.

We consider belief functions b; : T; — M(T_;) that are continuous. The meaning of
this assumption depends on the topology that is imposed on M (T_;), the space of prob-
ability measures on T_; := [] T with the Borel c-algebra B(T-;) = [] B(Tj). In principle,
the topology should be spe]é;ied so as to properly reflect the contir{j;ty properties of the
functions and correspondences that one is interested in. Given the restriction to continu-
ous payoff functions 77; and given the use of continuous participation fee schedules z/,, a
natural candidate for a topology on M (T_;) is the topology of weak convergence of prob-
ability measures, under which the mappings from measures into integrals of bounded
continuous functions are continuous.'” With this topology, participants” objective func-
tions can usually be taken to be continuous and behaviour correspondences upper hemi-
continuous in their beliefs.

Use of the topology of weak convergence has however been criticized because this
topology is too coarse to provide for what Dekel, Fudenberg, and Morris (2006) refer to
as the lower semicontinuity property, i.e. the property that the minimal ¢ > 0 for which
strategies are interim e-rationalizable should depend continuously on their types.'® This

12As is well known, if T_; is a separable metric space, M(T_;) can be identified with the space of con-
tinuous linear functionals on the space C(T_;) of bounded continuous real-valued functions on T_;, i.e. the
dual of C(T_;), and the topology of weak convergence coincides with the weak* topology. If T_; is not sep-
arable, the dual of C(T_;) corresponds to the space rba(T_;) of regular (finitely) additive set functions on
(T_;, B(T_;)), which is larger than M(T_;). In this case, the topology of weak convergence coincides with
the subspace topology that is induced by the weak* topology on rba(T_;). See, e.g., Parthasarathy (1967), p.
35.

13Gee Dekel, Fudenberg, and Morris (2006), Chen, DiTillio, Faingold, and Xiong (2010). Their criticism of
the weak* topology is formulated in the context of the universal type space, but applies in abstract type space
as well. As an example, consider the following version of Rubinstein (1989) e-mail game. Let I = 2, and set
T, =T, ={0,3, %, .., 1}. Suppose that each agent has action set {0, 1} and that the payoffs are given as (0, 0)
if both agents choose the action a; = 0 (1,1) if ; > 0 and both agents choose the action a; = 1, and (—x, —x)
in all other cases, i.e. if t{y = 0orift; > 0and a; #a_;.

Specify a belief function b; for agent 1 so that, for some & € (0,1) and n = 1,2,..., b1 (;/f7) = ad(y_1)/n +
(1= a)8,/(ns+1) and by(1) = &1, where for any t € [0,1], J; is the degenerate measure that assigns all proba-
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criticism would call for the use of a finer topology.

We do not actually specify a particular topology on M (T_;) but assume that the topol-
ogy on M (T_;) is metrizable by a metric that is a convex function on M (T_;) x M(T-;).
This assumption includes the topology of weak convergence of probability measures,

[ fenpar — [ peopa)

where the supremum is taken over the set of bounded Lipschitz continuous functions
f : T_; = R for which

which is metrizable by the metric

(13)

*L (B, B) = sup
f

Fo
sup |f(t—;)|+ sup ) = f( al <1,
t_;eT_; t_;eT_; (t*Z’t )
f_jeT_;

where d is the metric on T_;.'* The function pB is obviously convex.
Metrizability by a convex metric is also satisfied by any topology that can be induced
by a metric of the form

p(B,B) =

where ||-|| is a norm on the space of signed measures on T_;. An example is the metric

(14)

(B B)= sup |B(B)—p(B),

BeB(T_;)

which identifies the distance between two measures 8 and 8 with the total variation of the
signed measure B — B. The topology that induced by the total-variation metric is immune

bility mass to the singleton {t}. Similarly, specify a belief function b, for agent 2 so that, for some g € (0,1)
andn =1,2, .., ba(37) = BSu/(ns1) + (1 = B)O(ns1)/(ns2) and bp(1) = 41.

If the measures b (1), f1 € Ty, are absolutely continuous with respect to some fixed measure A on Ty, then,
for n = 1,2, ..., the density of by (;17) with respect to A satisfies fj, (;17[747) = (1 — a)/A({;/7}). Because
A is a probability measure, it must be the case that A({;/;
fo Gtz |52 ) fails to converge to fy, (1]1) = 1/A({1}) as n goes out of bounds and ;7 converges to one.

) goes to zero as n goes out of bounds. Hence

One easily verifies that, if x is sufficiently large, then for each agent i, the action 4; = 1 is interim rational-
izable if t; = 1 but not if t; < 1. Indeed, if ¢ > 0 is sufficiently small, then a; = 1 is not even e-rationalizable if

t; < 1. We return to the issue in the context of the universal type space in Section 3.
14See Dudley (2002), p. 395.
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to the criticism of Dekel, Fudenberg, and Morris (2006).'> The proof that the functions p®
and p"V are convex is straightforward and is left to the reader.

Given the topology on M(T_;), we write C(T;, M(T_;)) for the space of continuous
belief functions from T; to M(T-;), and we endow this space with the topology of uni-
form convergence. We also write £*(T;, M(T_;)) for the set of those belief functions
in C(T;, M(T-;)) that satisfy the McAfee-Reny condition (*) for full surplus extraction.
Throughout the remainder of the paper, we impose the following assumption.

Assumption Each of the type spaces T; has more than finitely many elements.

If the type spaces are finite sets and T_; has at least as many elements as T}, the analysis
of Crémer and McLean (1988) implies that £*(T;, M(T_;)) is actually an open and dense
subset of C(T;, M(T-;)).'® With infinite type spaces, we only obtain residualness and
denseness.

THEOREM 2.4 Assume that the metric space T; is compact. Assume also that the topology on
M(T_;) is at least as fine as the topology of weak convergence and is induced by a metric that is
a convex function on M(T_;) x M(T_;). Then the set E*(T;, M(T_;)) of continuous functions
from T; to M(T_;) that have the FSE property is a residual subset of the space C(T;, M(T-;)), i.e.,
E*(T;, M(T-;)) contains a countable intersection of open and dense subsets of C(T;, M(T-;)). If
the metric space M(T_;) is complete, E*(T;, M(T-;)) is itself dense in C(T;, M(T-;)).

Theorem 2.4 is the major mathematical contribution of this paper. Its proof is given at
the end of our discussion of abstract type spaces, in Section 2.5 below.

To complete the discussion here, we note that, by the arguments given above, the set
C(T;, ©;) x £*(T;, M(T-;)) is contained in a subset of the set £**(T;, ©; x M(T_;)) of pairs
(6;(+), bi(-)) that have the FSE* property. Thus Theorem 2.4 immediately yields:

15Engl (1995) shows that, if beliefs have the topology of set-wise convergence, then the Nash equilibrium
correspondence has the required lower semi-continuity property. Engl’s arguments are easily extended to the
correspondence of interim e-rationalizable actions. Since the topology of setwise convergence is coarser than
the topology induced by the total-variation metric, the lower semi-continuity property also holds if beliefs
are endowed with the latter topology.

16For the case of finite type sets, Crémer and McLean (1988) also showed that full surplus extraction
through a dominant-strategy mechanism can be achieved if and only if the matrix of posterior beliefs of
all types of each agent has the rank n; where n; is the cardinality of the type space of agent i.
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COROLLARY 2.5 Under the assumptions of Theorem 2.4, the set £**(T;, ©®; x M(T-;)) of con-
tinuous functions from T; to ©; x M(T_;) that have the FSE* property is a residual subset of
the space C(T;, ©; x M(T_;)), i.e. E*(T;, O; x M(T-;)) contains a countable intersection of
open and dense subsets of C(T;, ®; x M(T-;)). If the metric space ©; x M(T-;) is complete,
E(T;, ©; x M(T-;)) is itself dense in C(T;, ©; x M(T_;)).

2.4 Genericity of Common Priors with the FSE Property

Whereas the analysis so far has focused on a single agent, we now consider the scope
for surplus extraction from all participants together. We restrict our analysis to the case
where the belief functions b;, i = 1, ..., I, can be interpreted as regular conditional dis-

I
tributions that are derived from a common prior on the space T := [] T; of vectors of

all agents’ types. As before, for any i, we allow M(T_;) to have any ic:)lpology that is at
least as fine as the weak* topology and is induced by a metric that is a convex function
on M(T_;) X M(T-;). The belief function b; is again treated as an element of the space
C(T;, M(T-;)) of continuous functions from T; to M (T_;). We consider priors that have
marginal distributions with full supports, Tj, ..., T;, and that admit continuous regular
conditional distributions for t_; given t;, for all i. The set of such priors is denoted as

ME(T).

REMARK 2.6 Forany p € M%(T) and any i, there exist a unique p;(j) € M(T;) and a unique
bi(u) € C(T;, M(T-;)) such that, under the prior , u;(p) is the marginal distribution on T; and
bi(n) is a reqular conditional distribution for t _; given t;.

Proof. Fix y € M$(T). Existence and uniqueness of the marginal distributions p;(y),
i =1,..., I are standard. The definition of M;(T) implies that, for any i, there also exists
a function b;(p) € C(T;, M(T_;)) that is a regular conditional distribution for ¢_; given
t;. Consider any other function by in C(T;, M(T_;)). If b; # b;(n), there exists t; € T; such
that b;(t;) # bi(t;, u). Because b; and b;(u) are both continuous functions, it follows that
bi(t) # bi(t, ) for all t, in an open neighbourhood of t;. Because y has full support, t;
belongs to the support of y; (1), and we must have u({t\ € T; | b;(t}) # bi(t},u)}) > 0.
Since regular conditional distributions induced by a given prior coincide almost surely, it
follows that b; cannot be a regular conditional distribution for t_; given t; under the prior
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i, ie., bi(p) is the only continuous function that is a regular conditional distribution for
t_; given t; under the measure . m

For simplicity, we focus on the FSE property rather than the FSE* property. Given the
mappings y — bi() from M%(T) to C(T;, M(T-;)), i = 1,..,1, we say that a prior
admits full surplus extraction if and only if each of the belief functions b;(u), i =1, ..., I, has
the FSE property. We refer to such priors as FSE priors and denote the set of FSE priors on
T as F(T). The following theorem establishes the genericity of FSE priors in M%(T).

THEOREM 2.7 Assume for each i, that T; is a compact metric space and that the topology on
M(T_;) is at least as fine as the topology of weak convergence and is induced by a metric that
is a convex function on M(T_;) x M(T-;). Let M;(T) be endowed with the coarsest topology
under which each of the mappings u — w;(u), u — bi(u), i = 1,...,1, is continuous. Then the
set F(T) of FSE priors is a residual and dense subset of M}(T), i.e., F(T) contains a countable
intersection of open and dense subsets of M(T). If the spaces M(T_;) are complete, the set F(T)
is itself dense.

Proof. Fori = 1,.., 1, let F;(T) C M}(T) be the set of priors u for which the belief
function b;(u) belongs to the set £*(T;, M(T-;)) of functions in C(T;, M(T_;) that satisfy
the McAfee-Reny condition for full surplus extraction. Clearly,

F(T) = () F(D). (15)

To prove that F(T) is a residual subset of M;(T), it is therefore enough to show that each
of the sets F;(T), i = 1,...,1, contains a countable intersection of open and dense subsets
of M(T).

We claim that, with the specified topology on M$(T), for any i, the map p — b;(j) is
open as well as continuous. To see this, it suffices to note that this map is the composition

I
of the map u — {p;(p),bj(p) ][:1 from M{(T) to Hl[M(TZ) x C(T;, M(T_;))] and the
]:

I
projection from [T [M(T;) x C(Tj, M(T-;))] to C(T;, M(T-;)). The topology on M5 (T) is
j=1
specified so that the open subsets of M;(T) are exactly those sets V for which the image

I
sets {{pj(u), b;(p) }:1|y € V} are open in [][M(T;) x C(T;, M(T_;))]. Therefore the
j=1

map u — {u;i(u), bj(1) }][:1 is open as well as continuous. Since the projection is also open

and continuous, it follows that, for any i, the map y — b;(u) is open and continuous.
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For any i, Theorem 2.4 implies that the set £*(T;, M*(T_;)) contains a sequence { W} }°
of open and dense subsets of C(T;, M(T-;). For any i and k, define

Vii= {p € M§(T)|bi(n) € Wi} (16)

By the definition of F;(T), V| C Fi(T) for all k. Hence, N, Vi C F;(T). Because W/ is
open and the function # — b;(yt) is continuous, V} is also open for each k. Because the
function v — b;(+,v) is open, the set

{bi(p) € C(Ti, M(T_)[u € V*}

is open whenever V* is an open subset of M;(T) Since W; is dense, it follows that the
intersection

Wi N {bi(p) € C(T;, M(T_;)|p € V*}

is non-empty, and therefore also the intersection V;/ N V* is non-empty whenever V* is
open. Thus V] is dense as well as open in M}(T) It follows that F;(T) contains a count-
able intersection of open and dense subsets of ./\/lJC[(T) By (15) therefore F(T) is a residual
subset of MJC[(T)

For any i, if M(T_;) is complete, then, by Theorem 2.4, £*(T;, M(T-;)) is dense in
C(T;, M(T_;)). Trivially also, M(T;) x £*(T;, M(T_;)) is dense in M(T;) x C(T;, M(T_;)).
Because the map u — (pi(p), bi(p) from ./\/lj[(T) to M(T;) x C(T;, M(T_;)) is open and
continuous, it follows that F;(T) is dense in M;(T) Because a finite intersection of dense
sets is itself dense, it follows that, if all the spaces M (T_;) are complete, then F(T) is also
dense in M(T). m

In Theorem 2.7, the topology on ./\/lj[(T) depends on the topologies that are imposed
on M(T_;), i = 1,..,1. As in Theorem 2.4, these topologies are not actually specified;
only a requirement of metrizability by a convex metric is imposed. As mentioned, this
convexity requirement is satisfied, e.g., be the weak* topology and by the total-variation
topology.

One easily verifies that, if M(T_;) is endowed with the weak* topology, then the
topology on M;(T) that is defined by the continuity requirement in Theorem 2.7 is also
the weak* topology. However, if M(T_;) is endowed with the total-variation topology,
the topology on M;(T) that is defined by the continuity requirement in Theorem 2.7
is obviously finer than the weak’ topology. Because the ranges M(T;) of the mappings
i — pi(u), i =1,..., 1, have the weak* topology, rather than the total variation topology,
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the topology on M}(T) that is defined by the continuity requirement in Theorem 2.7 is
also coarser than the total-variation topology on M;(T) itself.!”

Given that the FSE property for belief functions is stronger than the FSE* property
for pairs of payoff and belief functions, Theorem 2.7 can be used to obtain a genericity
result for the FSE* property in abstract type spaces with common priors. The argument is
similar to the one that was used to derive Corollary 2.5 from Theorem 2.4. The details are
left to the reader.

2.5 Proof of Theorem 2.4

The proof of Theorem 2.4 involves ideas from the topological theory of embeddings. The
classical embedding theorem for continuous functions asserts that, if X and Y are finite-
dimensional compact metric spaces and if the dimension of Y is strictly greater than twice
the dimension of X, then the set of embeddings, i.e. of continuous injective functions, is
a residual subset of the set of continuous functions from X to Y when the space of these
functions has the topology of uniform convergence.'®

The McAfee-Reny condition is stronger than injectivity: If the measure y; in condition
(*) is itself degenerate, i.e., if yt; = &y, for some t; € T;, then condition (*) specializes to the
requirement that

@1, (0) = @i, (6,) implies d;, = J,

which implies that the mapping b; is injective. The set £*(T;, M(T-;)) is thus a subset of
the set £(T;, M(T_;)) of continuous injective functions from T; to M(T_;). Theorem 2.4
implies that £(T;, M(T-;)) is a residual subset of C(T;, M(T-;)).

Because the McAfee-Reny condition is stronger than injectivity, we cannot use the
embedding theorem itself but need a new argument. The argument involves the same
ideas as the proof of the classical embedding theorem, but makes essential use of the fact
that the space M (T_;) is infinite-dimensional. Even if the domain T; of the belief functions

17To see this point, consider the following example, which is adapted from the Supplementary Material to
Chen and Xiong (2013). Let I = 2, Ty = [0,1] U {7}, 72}, T» = [0,1]. Consider the subset P of measures in
M}(T) that take the form (1 — 2a)u + &0 (1 1) T 40(2 1) for some y € M}(T) and a € (0, }), where 7 is al;l
arbitrary but fixed element of T,. One easily verifies that, if M?(T) has the total variation topology, then P
is open and dense in M;(T). Moreover, if 711 (T}, T2) # m1(T2, T2), priors in P do not have the FSE property.

18Ge¢, e.g., Hurewicz and Wallman (1941). In Gizatulina and Hellwig (2014), we used this theorem to show
that the set of belief functions having the BDP property is residual in C(T;, M(T_;)).
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of agent i is a finite-dimensional set, the conclusion of the theorem can only be obtained if
the range is infinite-dimensional.'’

Let M(T;) be the space of probability measures on T;, endowed with the topology of
weak convergence of probability measures. Because T; is a compact metric space, Theo-
rem 6.5 in Parthasarathy (1967) implies that M(T;) of is also a compact metric space. We
write d for the metric on M(T;).

The metric on M(T_;) is denoted by p. The convexity assumption in the theorem
implies that, for any index set £, any two mappings ¢ — B(£), £ — B(¢) from L to
M(T_;), and any measure « on £, we have

([ Bontae), [ ponan) < [ p((e) peatae) 7

For any ¢ > 0, we define G; as the subset of C(T;, M(T_;)) that contains all mappings
b; with the property that, for any t; € T; and all u € M(T;),

v, (81) = v, (u) implies d(p, dy) <, (18)

where d (1, dy,) is the distance between the measures y and Jy,

Claim 1: £*(T;, M(T_;)) = N1 Gk
Proof. If b; € Gy i for all k, then forany t; € T;and all u € M(T;), ¢, (dt,) = @y, () implies
0 < d(u,d,) < 1/k hence d(u,d;,) = 0and pu = &;,. Conversely, if b; € E*(T;, M(T-;)),
then, by (*), ¢y, (6,) = ¢@p, (1) implies d(p,6;,) =0 < 1/kfor all t; € T;, all u € M(T;), and
hence b; € Gy forallk. m

Claim 2: For any ¢ > 0, the set G, is an open subset of C(T;, M(T_;)).
Proof. Fix any b; € G, and let

[:=A{(ti,n) € Ti x M(T;)|d(p, 6,) > €}

and

7= min_p(y(8,), gu, (1)) (19)
(tip)er

Because T; and M (T;) are compact, the minimum in (19) is well defined, i.e., there exists
(ti, ) € I' such that d(¢y, (61,), ¢, (1)) = 1. Since b; € G¢ and, for (t;, u) € T, d(u, o) > ¢,
it follows that # > 0.

91 Appendix B, we show that, for any , there is a function from [0, 1] to [0,1]" that violates condition (¥)
and cannot be approximated by functions from [0, 1] to [0,1]" that satisfy condition (*).
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Now let b; be any mapping in C(T;, M(T_;)) such that

o(Bi(t:), bi(t)) < 1 20)

for all t; € T;, and consider the distance p(¢p, (1), ¢, (1)) for any u € M(T;). By (6) and
(17), with £ = T;, B(-) = b; (), B(-) = b;(-), and & = p, we have

5. (1), @b, = bi(t)u(dt;), | bi(t;)p(dt;
plonps ) = o ( [ Bleontan), [ nieuae) )

i

< [ ot bilt))n(at).

By (20), it follows that
o5, (1), 91, (1)) < 7. e3)

Thus, if t; and p are such that ¢, (61,) = @3, (1), it must be the case that p(¢y, (6,), @i, (1)) <
11. By the definition of 7, it follows that d(p, &:,) < ¢, which proves that b; is also an element
of G;. Thus, along with b;, any element of the open %—ball around b; is an element of G;.
The claim follows immediately. m

Claim 3: For any ¢ > 0, the set G is a dense subset of C(T;, M (T_;)).
Proof. Let ¢ > 0 be given. Fix any b; € C(T;, M(T_;)) and any # > 0. We will show that
there exists a function b; € G, such that

o(bi(t), bi(t;)) <1 (22)

forallt; € T;.

Relying on the fact that the continuous function b; is uniformly continuous on the
compact set T, let { € (0,¢) be such that, for any ¢; and £; in T;, d(dy,6;,) < { implies
p(bi(t;),bi(t:)) < %. Because T; is a metric space, there exists a covering Uy, Uy, ... of T;

such that
d(Uy) < ¢ (23)

and
p(bi(U) < 2 24)

for all k. where d(Uj) and p(b;(Uy)) are defined as the suprema of d(t;, f;) and of p(b;(t;), bi(t;)),
respectively, over t;, f; in Uy,.

Because T; is compact, the covering Uy, Uy, ... of T; has a finite subcovering, which we
denote as Uy, Uy, .., Uk. Given the sets Uy, Uy, .., Uk, we may select measures By, ..., fx in
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M(T-;) such that, for k = 1,..., K, p(Bx, bi(£;)) < 1 for some f; € Uy, and, moreover, for
some continuous function g : T_; — [0,1], the integrals

/T vg<t—l’>d:3k(t—l’)l k= 1,...K, (25)

are linearly independent. The existence of such B, ..., Bx and g follows from the fact that
T_; has more than K distinct elements.?’
Foreacht; € T;and k =1,2,..., K, set

wk(ti) = {’gjl‘i\nu d(ti, ltl)
i< Li\Uk

and (t)
Wi (L
aelty) = i)
U T w(h)
This is well defined because for each t; € T;, there exists at least one ¢ such that t; € U,
and therefore wy(t;) > 0and YX_; w,(t;) > 0.
We now define b; : T, — M(T_;) by setting

K
bi(t) =Y ax(ti) B (26)
k=1
forany t; € T;. The functions wy and a; are obviously continuous. Therefore b; € C(T;, M(T_;)).

Moreover, forany t; € T;and k = 1, ..., K, ax(t;) > Oimplies t; € Uy and hence p(By, b;i(t;)) <
g. From using (17) with £ = {1, ..., K}, B(k) = B, and B(k) =bi(t;), k=1,..,K, it follows

£,
of T_; with open neighbourhoods B, ..., BK that are disjoint. By Urysohn’s lemma, there exist continuous
functions gk :T_; — [0,1], k = 1,2,..K, such that for each k, gk(tk_i) =1and gk(t,,-) =0fort_; ¢ BX. We
write g = (gk)llle.

Select measures ,8(1),..., ?( in M(T_;) such that, for k = 1,..., K, p( g,bi(fi)) < % for some f; € U. If
the vectors fT,, g(t,i)dﬁg(t,i), k = 1,..,K, are linearly independent, set B, = ,82 for k = 1,..., K. If the
vectors fT,i g(t_i)dpd(t_;), k = 1,..,K, are linearly dependent, set fr = (1 —¢)B} + &by fork =1,..,K,
where, for each k, (stki is the degenerate measure with unit mass at tli ;and ¢ > 0 is sufficiently small so that
p(Bx, bi(F;)) < 4 for all k. If € is chosen not to be an eigenvalue of the matrix (fT,,- g(t_i)dpd(t_;))K_,, the

vectors fT,, g(t_)dBY(t_;), k =1,.., K, are linearly independent.

20Tp see this, observe that, since T_; has infinitely many elements, there exist K distinct elements H i e
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that

k=1
K
) | in U
< Lalt) | inf p(pur) + ]
< 7, (27)

uniformly in ¢;, which establishes (22). In the derivation for (27), the last inequality follows
because i had been chosen so that p(By, bi(f;)) < 4 for some f; € Uy; the last inequality
but one follows from (24) and the triangle inequality.
It remains to be shown that b; € G,. For this purpose, consider any t; € T; and y €
M(T;), and suppose that
95, (04) = @5, (4)-

By construction,

K
@5, (81,) = bi(t;) = kz i (t;) Br
=1
and
%,v(#):/T‘ Z/wkfﬁkudt)

Thus, @5, (31,) = @3 (1) implies

Z’Xk ) Bx = Z/“k )Bi p(dt;)

For the integrals in (25), we therefore obtain

K K
; /Tl —)dpi(t-i) = k;/ﬂ zxk(ti)/ig(tz)ﬁk(dtl) u(dE)
K
- 1 /T (B / (- n(d) puldt)
and hence,
&p\ti) — [ & _l' d_i —i dt_;) =0.
k; [ k(t) / k(E)pu( t)] /g(t )Bi(dt_;) =0 (28)



Because the integrals fT,i g(t_i)dBi(t—i), k = 1,.., K, are linearly independent, equation
(28) implies that

(k) — /zxk(fi)y(dfi) ~0 (29)

for all k. For any k, therefore, ax(t;) = 0 implies [ ay(f;)p(dE;) = 0. Since ax(t;) = 0 if
t; ¢ U and ay(F;) > 01if f; € Uy, it follows that, if t; ¢ Uy, then u(Ux) = 0. Thus, the
measure y must be concentrated on the union of the sets Uy that contain ¢;. By (23), any
one of these sets, and therefore their union, is contained in Bg(ti), the open (-ball around
ti. Thus, u(Bg(t;)) = 1. It follows that d(d;, ) < {. Since { < ¢, we infer that b; € G,.
Claim 3 is thereby established. m

The first statement of the theorem follows from Claims 1 - 3.

Claim 4: If M(T_;) is complete, £*(T;, M(T-;)) is dense in C(T;, M(T-;)).
Proof. If M(T_;) is complete, C(T;, M(T_;)) is also a complete metric space’! and there-
fore a Baire space. The claim thus follows from the first statement of the theorem. m

Above we noted that the metrics p¥ and p!" for the weak* topology and the total-
variation topology on M(T_;) both satisfy the convexity assumption of Theorem 2.4.
By standard arguments, in both topologies, M (T_;) is also complete.”” Thus, with both
topologies, £*(T;, M(T-;)) is also dense in C(T;, M(T_;)).

3 Full Surplus Extraction in Universal-Type-Space Models
3.1 The Universal Type Space

I
We now extend our analysis to the @-based universal type space, where ® = ]| ®; and
i=1
®1, .., O are compact metric spaces of payoff parameters for agents 1, .., I. We restrict our
analysis to the special case where each agent i knows his own basic type t; and his own
beliefs of different orders.

Fori =1,..., I, define sets X?, Xl-l, ... inductively by setting

X0=0 ;X! =0 x M(X",), (30)

21Gee, e.g., Aliprantis and Border (2007), p. 74.

22For the weak* topology, it suffices to note that, because T_; is compact, M(T_;) is also compact and
hence complete; see Theorem 6.5 in Parthasarathy (1967). For the total-variation topology, see Dunford and
Schwartz (1988), p. 161.
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and, forany n > 2,

X = {(9,1-, pli ™) € O x M(X%).o x M(X"21) margX;i,.lyk_i =l k= 2,...,1/1} .
(31
The ®-based universal type space of agent i is defined as

u; = {(Gi,y},yiz,...) €O x M(XN) x M(X}) x ... marg -1t} = i tn = 2,3...} :
(32)
For a typical element

i = (6 1, 15 ), (33)
of U;, 6; indicates the payoff parameters of agent i and u}, 42, ... indicates the hierarchy
of the agent’s beliefs about the other agents” parameters and the other agents” beliefs of
different orders.

To consolidate the hierarchy of beliefs of different orders into a single belief about the
other agent’s types, the spaces Uj,j # i, of other agents’ types must be endowed with a
measurable structure. Following Mertens and Zamir (1985), we note that, for any j, the
space U; is a subspace of the product

U; = 0j x M(X?) x M(X}) x ... (34)

For each j, the fact that ©; is a compact metric space implies that X? = O_jis also a
compact metric space and so is X% jas well as M (X° ].) when endowed with the weak*
topology. By a straightforward induction, it follows that, for any #, Xi' and X" j are also
compact metric spaces and so is M (X" j) when endowed with the weak* topology. Given
these topologies and the associated Borel o-algebras B(0®;), B (M(X(lj)), B(M(Xt )
B(M(X% ;)) on the factors of the product in (34), we write 5 (U;) for the product c-algebra
on U; and

B(UJ‘) = {B C Uj|B S B(CL)} (35)

for the induced o-algebra on U;. We also write B(U_;) for the product c-algebra on U_; =
[T U; and M(U_;) for the set of probability measures on (U_;, B(U_;)).
j#i

For any u; = (6;, ul,u?,...) € U, the consistency condition margy.-1jj = it n =
2,3... implies that the belief hierarchy u!, ji?, ... satisfies the conditions of Kolmogorov’s
extension theorem. Consequently, there exists a unique measure

Bi(ui) € M(U-;) (36)
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that induces y}, 7, ... as marginal distributions on ©_;, X! ,, .... Upon combining the map-
pings

u; — Bi(u;) (37)
and
u; — 0i(u;) := proje, (u;), (38)
one obtains a bijection
ui = (6:(ui), pi(ui)), (39)

between the universal type space U; of agent i and the space ®; x M(U_;) of agent i’s
payoff characteristics and beliefs.

Mertens and Zamir (1985) have shown that this bijection is actually a homeomorphism
if the spaces Uj, ..., U; are endowed with the product topology. Hellwig (2017a) gives
an analogous result for the case where Uy, ..., U; are endowed with the uniform weak
topology of Chen et al. (2010). These findings will play an important role in the context of
our genericity results below.

3.2 The FSE Property in the Universal Type Space

In the universal type space setting, equilibrium payoffs in a strategic game take the form
I1;(61(u;), B1(u1), ..., 01(ur), Br(ur)). The analogue of (10), the condition for (approximately)
full surplus extraction, takes the form

IT:(6;(u;), Bi(ui)) —e < H}}n/zi(u—i) Bi(du_; | u;) <TL;(0;(u;), Bi(ui)),  (40)

where I'l;(0;(u;), Bi(u;)) is the interim expected value of IT;(0; (u;), B1(u1), ..., 051 (ug), Br(uy))
under the measure B;(u;) that is given by (37).

Whereas condition (40) is formally similar to condition (2) above, with §; as the agent’s
belief mapping, there is an important difference between them. In the abstract-type-space
setting, the FSE property was defined as a property of belief functions, and the question
was what can be said about the set of belief functions with this property. In the universal-
type-space setting, there is only one belief function §;, which is fixed and cannot be varied
without losing the interpretation of the universal type space as a space of payoff charac-
teristics and belief hierarchies.

Moreover, when considered as a function on U; the pair of mappings (6;(+), Bi(-)) does
not satisfy the generalized McAfee-Reny condition for full surplus extraction. In fact,
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given the product structure of both the domain and the range ©; x M (U_;) of the map-
ping u; — (0i(u;), Bi(u;)), any belief in M(U_;) can be paired with any set of payoff
parameters in ©;. At the level of the universal type space as a whole, the FSE property
and the FSE* property fail to hold.

However, these properties can be obtained as properties of subsets of the universal type
space. We say thata set S; C U; has the FSE* property if the restriction to S; of the mapping
(39) has the FSE* property, i.e. if, for every ¢ > 0 and every continuous payoff function
I1; from ©; x M(U_;) to Ry, there exist a system zi, ey zé\]l_ of participation fee schedules
for agent i such that (40) holds for all u; € S;. We also say that a set S; C U; has the
FSE property if the restriction to S; of the mapping (37) has the FSE property, i.e. if, for
every ¢ > 0 and every continuous payoff function I; from S; to R4, there exist a system
zli, e Zé\h of participation fee schedules for agent i such that for all u; € S;,

(1) — € < mnin/z;(u,i) Bildu_; | uj) < TL(uy).

From Theorems 2.1 and 2.2 and the fact that the mapping (39) is a bijection, we imme-
diately obtain:

REMARK 3.1 Let Uy, ..., Uy be metric spaces and assume that the mapping (37) is continuous. A
compact set S; C U, has the FSE property if and only if it has the FSE* property. Both properties
hold if and only if the restriction to S; of the bijection (37) satisfies the McAfee-Reny condition,
i.e., if and only if, for all i; € S; and every probability measure y; on S;,

@p. (i) = @p;(0a;) implies p; = 6g,, *)

where 0y, is the degenerate measure that assigns all mass to the singleton {6z} and @g (y;) is
defined to that
g, (Blui) = /S Bi(Bui) pi(du;)

forall B € B(U_;).

Given that the FSE and FSE* properties of a compact subset of the universal type space
are equivalent, from now on, we drop the distinction and refer only to the FSE property.

For an epistemic interpretation of this property, we introduce the notion of an informa-
tion base for a subset of the universal type space. For any compact set S; C U;, a compact
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metric space T; and a continuous mapping ; : T; — U; are said to provide an information
base for S; if S; is the range of 1;.> The following proposition relates the FSE property of
aset S; C U, to the properties of of any information base (T;, ;) of S;.%*

PROPOSITION 3.2 Assume that Uy, ..., U are metric spaces and that the mapping (37) is con-
tinuous. A compact set S; C U; has the FSE property if and only if, for every information base

(Ti, i) of S;, the mapping
(07 (), Bi () = (0:(-), Bi(")) o 9 (41)

from T; to ®; x M(U_;), which is the composition of the mapping (39) with the mapping ;, has
the FSE* property.

Proof. The “only if” part of the proposition is trivial because any compact set S; C U,
together with the identity mapping, is an information base for itself. For the ”if” part,
consider any compact metric space T; and any continuous function ; from T; to U; such
that ¢;(T;) = S;. The continuity of the pair (6;(-),Bi(-)) implies that the composition
07(-),B;(-)) = (6i(),Bi(+)) o ¢ is continuous. By Theorem 2.2, (6/(-), Bi(-)) has the
FSE* property if and only if it satisfies the generalized McAfee-Reny condition. Thus, we
must show that the implication

*

¢p: (1) = @p: (6;,) implies po (67 (), B (-) " = O(0r (5,61 (F) (**)

holds for every f; € T; and every probability measure y; on T;. Let /; € T; and p; € M(T;)
be such that the premise of (**) holds. Let il; = ;(F;) and fi; = p; o ;' Then obviously

@p,(fii) = @p: (1) and @p,(0a,) = ¢p,(7,),

23For an extensive discussion of epistemic interpretations of such a formalism in terms of hard or soft
information, see Section 2.4 of Dekel and Siniscalchi (2015). In their analysis, the mapping ¢ corresponds to
the canonical mapping of an abstract type space T = {T;, 0;(.), b;(.) }; into the universal type space. See also
Dekel, Fudenberg, and Morris (2006), in particular, p. 281.

24The participation fee schedules z/,(u_;) in (40) condition on the other agents’ payoff parameters and be-
lief hierarchies, not just on their payoff parameters. It is quite possible for B; to satisfy the McAfee-Reny
condition and for (6;(-), B;(+)) o ¢; to satisfy the generalized McAfee-Reny condition even though the func-
tion projaqe_,) © Bi(+) that indicates the agent’s first-order beliefs about the other agents’ payoff parameters
violates the McAfee-Reny condition and (6;(-), projye_,) © Bi(*)) © ; violates the generalized McAfee-Reny
condition. In this case, fee schedules that condition on the other agents” belief hierarchies, as well as their
payoff parameters, can provide for surplus extraction where fee schedules conditioning on payoff parameters
alone cannot. For a detailed discussion and examples, see Gizatulina (2015).
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so the premise of (**) implies that g, (1;) = @p,(dz;). If S; has the FSE property, then, by
Remark 3.1, it follows that fi; = J5,. Therefore,

po (67(),Br()) = pow o (0:(),Bi(-) T =g 0 (6:(-), Bi(1)) T = bior iy ) (42)

where the first equation follows from (41), the second equation from the equation fi; = Jy,,
and the third equation from the fact that, by the definition of ;, (0;(i;), Bi(i1;)) = ¥i(F;).
The implication (**) is thus satisfied and the mapping ¢; thus has the FSE* property if S;
has the FSE property. m

Proposition 3.2 implies, in particular, that, if a set S; C U; has two different infor-
mation bases (T}, ¢}), (T?,9?), then either both of the mappings (6;(-), B:(-)) o ¥} and
(6:(+), Bi(+)) o ¢? have the FSE* property or none of them has it. Whereas the notion of
information base might look like a device to reintroduce abstract type spaces by the back
door, the scope for full surplus extraction is independent of the details of the space T; of
information variables and depends only on the range of the mapping

lPi : Tl' — Ui (43)

that maps information variables into pairs of payoff parameters and belief hierarchies.
This range, and by implication, the possibility of full surplus extraction, is unaffected un-
der any strategically irrelevant modification of T; such as the introduction of additional
information values with associated pairs of payoff parameters and belief hierarchies du-
plicating some of those that are already in the range of i; or a replacement of ¢; by the
composition of 1; with some permutation p of the set of information variables.

3.3 Genericity of the FSE Property in the Class of Compact Subsets of the Uni-
versal Type Space

The following result shows that the FSE property is generic in the class of compact subsets
of the universal type space.

THEOREM 3.3 Assume that Uy, ..., Ur are metric spaces and endow the space of closed subsets of
U; with the Hausdorff topology. Assume further that the topology on M(U_;) is at least as fine as
the topology of weak convergence and is induced by a metric that is a convex function on M(U_;)
x M (U_;) and that the mapping (39) from U; to ®; x M(U_;) is a homeomorphism. Then the
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set of compact subsets of U; that have the FSE property is a residual subset of the class of compact
subsets of Uj.

Theorem 3.3 is our main result concerning the genericity of full surplus extraction in
the universal type space. Like Theorem 2.4, Theorem 3.3 does not specify any partic-
ular topologies on the spaces that are involved, but merely give qualitative conditions
that the topologies must satisfy. The requirement that U_; be a metric space is of course
satisfied when the spaces Uj, .., Ur have the product topology, as in Mertens and Zamir
(1985). In this case, obviously, M(U_;) with the topology of weak convergence is also
a metric space, and, by the argument given in Section 2.3, the metric can be specified as
a convex function on M (U_;) x M(U_;). Moreover, as was shown by Mertens and Za-
mir (1985), the mapping u; — (0;(u;), Bi(u;)) defines a homeomorphism between U; and
®; x M(U_;), so all the topological requirements of Theorem 3.3 are satisfied.

However, the product topology is not the only topology on the universal type space
for which the theorem applies. It also applies if the spaces Uj, .., U; have the uniform
strategic topology of Dekel, Fudenberg, and Morris (2006) or the uniform weak topology
of Chen, DiTillio, Faingold, and Xiong (2010), which have been proposed to ensure that
the minimal e > 0 for which strategies are interim e-rationalizable depends continuously
on their types, a property that Dekel, Fudenberg, and Morris (2006) refer to as lower
semicontinuity.””> These two topologies actually coincide, and both are metrizable by a
metric that defines the distance between two elements u}, u? of the universal type space
for agent i as the supremum of the distances between the individual components of u}
and u?, the distance between the payoff parameters 6} and 62, the first-order beliefs (})!
and (p})?, etc.”® Given this metric on the universal type spaces U, .., Uj, the topology of
weak convergence on M (U_;) is specified with reference to the convergence of integrals
of bounded continuous real-valued functions on U_; where continuity is defined with in
terms of the product topology on U_; that is induced by the uniform weak topology on
uj,j # i

2The product topology is too coarse for this purpose. Because, under the product topology, the weight

given to higher order beliefs eventually declines as one moves up in the hierarchy of beliefs, the product
topology is unsuitable for capturing the continuity properties of strategic behaviour in games such as Ru-
binstein’s e-mail game, in which beliefs of arbitrarily high orders can make a significant difference. See
Rubinstein (1989), Dekel, Fudenberg, and Morris (2006), Chen, DiTillio, Faingold, and Xiong (2010).

26See Chen et al. (2010, 2012).
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If the spaces Uj, .., U; are endowed with the uniform weak topology, the induced o-
algebras are actually larger than the product c-algebras, but Hellwig (2017a) and Hellwig
(2017b)) show that any set in the c-algebra that is induced by the uniform weak topology
is measurable by the completion of any measure on the product c-algebra.”” Any mea-
sure on the product c-algebra can therefore be uniquely extended to a measure on the
o-algebra that is induced by the uniform weak topology. Using the notation f;(u;) for the
extension of B;(u;), Hellwig (2017a) demonstrates that, if Uy, .., U are endowed with the
uniform weak topology, the mapping

uj — (0;(u;), Bi(u;))

defines a homeomorphism between the spaces U; and ©; x M (U_;) Moreover, the topol-
ogy of weak convergence on the space M(U_;) is metrizable, and is induced by the
bounded Lipschitz metric. Because, as we saw in Section 2.3, the bounded Lipschitz met-
ric does satisfy the convexity assumption of Theorem 3.3, this theorem is also applicable
when the universal type space is given the uniform weak topology.”®

The proof of Theorem 3.3 makes use of Proposition 3.2 and of the genericity results in
Section 2. We begin with a restatement of Corollary 2.5 for the present setting.

REMARK 3.4 Assume that T; is a compact metric space, that U_; is a metric space, and that the
topology on M(U_;) is at least as fine as the topology of weak convergence and is induced by a
metric that is a convex function on M(U_;) x M(U_;). Then the set £**(T;, ®; x M(U_;)) of
continuous functions from T; to ©; x M(U_;) that have the FSE* property is a residual subset of
the space C(T;, ©; x M(U_;)), i.e. E*(T;, O; x M(U_;)) contains a countable intersection of
open and dense subsets of C(T;, ®; x M(U_;)). If the metric space ®; x M(U_;) is complete,
E(T;, ©; x M(U-;)) is itself dense in C(T;, ®; x M(U_;)).

27Chen, DiTillio, Faingold, and Xiong (2010) claim the opposite, but Chen, diTillio, Faingold, and Xiong
(2016) correct this claim and give an example of a subset of U; that is Borel if U; has the uniform weak
topology but not, if U; has the product topology. The set in question is analytic and therefore universally
measurable, i.e. measurable in the completion of any measure on the product o-algebra.

2BIn contrast, Chen and Xiong (2013) assume that the universal type space has the product topology and
make essential use of this assumption. With the product topology, the universal type space is separable and,
in the topology of weak convergence, the set of priors with finite supports is dense. This fact is crucial For the
uniform weak topology on the universal type space, the results of Chen, DiTillio, Faingold, and Xiong (2010)
imply that the set of priors with finite supports is not dense.
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Given a compact metric space T;, we say that a set S; C Uj; is T;-compatible if there ex-
ists a continuous function ¢; : T; — U; such that the pair (T}, ¢;) provides an information
base for S;.

PROPOSITION 3.5 Assume that Uy, ..., Uy are metric spaces and endow the space of closed sub-
sets of U; with the Hausdorff topology. Assume further that the topology on M(U_;) is at least
as fine as the topology of weak convergence and is induced by a metric that is a convex function on
M(U_;) x M(U-;) and that the mapping mapping (39) from U; to ©; x M(U_;) is a homeo-
morphism. If T; is a compact metric space, the set of T;-compatible subsets of U; that have the FSE
property is a residual subset of the set of T;-compatible subsets of U,.

Proof. Let T; be any compact metric space. Because homeomorphisms map open and
dense sets into open and dense sets, Remark 3.4 and the assumption that the mapping (39)
from U; to ®; x M (U_;) is a homeomorphism imply that the set of functions ¢; : T; — U;
for which the composition (41) has the FSE* property is a residual subset of the space
C(T;, U;).

For any y; € C(T;, U;), let G;i(T;, ¢;) C T; x U; be the graph of ;. Because T; is com-
pact and C(T;, U;) has the topology of uniform convergence, the map ¢; — G;(T;, ¢;)
is a homeomorphism.”’ By another application of the fact that homeomorphisms map
open and dense sets into open and dense sets, it follows that the graphs G;(T;, ;) of the
functions ; : T; — U; for which the composition (41) has the FSE* property form a resid-
ual subset of the class {G;(T;, ¢;) : ¢; € C(T;, U;)}. Because, for any ¢; € C(T;, U;), the
range S;(T;, ¢;) of ¢; is the projection of G;(T;, ;) to U; and the projection mapping is
open and continuous, it follows that the ranges S;(T;, ;) of the functions ¢; € C(T;, U;)
for which the composition (41) has the FSE* property form a residual subset of the class
{Si(T;, ¢;) - ;i € C(T;, U;) }, i.e. the class of Tj-compatible subsets of U;. Since the ranges
Si(T;, ;) of the functions y; € C(T;, U;) are just the T;-compatible subsets of the universal
type space, the proposition follows. m

Proof of Theorem 3.3. Let 7; = {T }1cx be the family of compact metric subsets of the
countable product [0, 1]®. For any k, let E;(TF) be the class of T¥-based subsets of U; that
have the FSE property. Then

Ei(Ti) := Ukex Ei(TF) (44)

29See Naimpally (1966).
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is the class of sets S; C U, that have the FSE property and that have an information base
(T;, ¢;) with T; € T;. We will show that E;(7;) contains a countable intersection of open
and dense sets of compact subsets of U;.

For any k, let Ei(ﬂk) be the class of Tl.k-based subsets of U; that have the FSE property.

Proposition 3.5 implies that, for any k € K, there exists a sequence {O%}%_; of open and
dense sets of compact subsets of U; such that
Ei(TF) D Ny, 0% (45)
Ei(T7) D Ugex NS, OF. (46)
We claim that we also have
Ukek ﬂZ":1Of§ = Mpz1 Ukek Oﬁ (47)
and therefore,
Ei(T5) 2 Niy Ukex Oy (48)

To prove this claim, we note that, by the argument in the proof of Proposition 3.5, every
one of the sets OF is of the form

O}, = {projy,GIG € P},

where PF is a set of graphs Gi(Tik, ;) C Tl.k x U; of functions ¢; € C(T;, U;). For any k and
nand any G € Pk,
projjo,y~G = Tf

For any k and k' # k and any n and 1/, G € P¥ implies proj 01)=G # Tikland therefore
G ¢ Pr’l‘f Thus, PX N Pf;f = @ if k' # k. By elementary set theory, it follows that
Ukex M1 Py = My Ukexc P
But then, we also have
Ukek M1 O = Ukex Ny {proj,,G| G € Py}

= {projy, Gl G € Ukex M1 P}

= {proj,,G| G € Ny Ukex Py}

= My Ukek {proj; G| G € P&y

k
= Ny2q Ukek Oy,
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which proves (47).

Now, for any 7, the set Uy OF is open, being a union of open sets. It is also dense in
the union Ugcx {Si(TF, ;) : ¢ € C(TF, U;) } because, by the denseness of the sets OX for
ke K, forany k' € K and ¢; € C (Tik/, U;), any neighbourhood of Si(Tik,, ;) intersects Oﬁ’
and therefore Uy OX.

To complete the argument, we note that any compact set S; C U; is homeomorphic to
a compact subset of the product [0,1]*.>" The union Ugexc {Si(TF, ¢;) : ¢; € C(Tf, U;) } is
therefore just equal to the set of compact subsets of U;. Residualness of the FSE property
in the union of Tz-k-based subsets of U;, k € K, is equivalent to residualness in the class of
compact subsets of U;. m

3.4 Genericity of the FSE Property in the Space of Common Priors on the Uni-
versal Type Space

We finally provide a universal type space analogue of Theorem 2.7. Let M*(U) of com-
mon priors, the set of probability measures on U such that, for each i, the function B;(+)
that is given by Kolmogorov’s extension theorem is a regular conditional distribution for
u_; given u;. Consider the set M;(U) C M*(U) such that, for any y € M;(U) and any
i, the support of the marginal distribution v;(y) is a compact set. We say that u € M{(U)
has the FSE property if and only if, for every i the support of the marginal distribution
vi(u) has the FSE property.

Given Theorem 3.3, the same argument that was used to derive Theorem 2.7 from
Theorem 2.4 now yields a genericity result in the space of priors on the universal type
space.

THEOREM 3.6 Assume that Uy, ..., Uy are metric spaces. For each i, endow the space of closed
subsets of U; with the Hausdorff topology. Assume that the topology on M(U_;) is at least as
fine as the topology of weak convergence and is induced by a metric that is a convex function on
M(U-;) x M(U-;) and, finally, that the mapping (39) from U; to ®; x M(U_;) is a homeomor-
phism. If M;(U) is endowed with the coarsest topology under which the mappings from priors to
the supports of marginal distributions on the spaces U;, i = 1, ..., 1, are continuous, then the set
F(U) of priors in M (U) that have the FSE property is a residual subset of M (U).

Proof. For any i, let F;(U) be the set of priors y € M$(U) such that the support of the

30Gee, e.g., Engelking (1989), p. 260.
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marginal distribution v;(y) has the FSE property. By the argument given in the proof of
Theorem 2.7, it suffices to prove that each one of the sets F;(U), i = 1,..., 1, is residual in
M (U). For each i, the supports of the marginal distributions v;(u), 4 € M5(U), belong
to the class S; of compact subsets of U;.

The mapping u — supp v;(u) is in fact the composition of the mapping

u — (suppvi(p), ..., supp vi(p)) (49)

from /\/lj((ll) to the product §; X ... X Sy with the projection from S; X ... X S to S;. For
the given topology on M;(U), the mapping (49) is open and continuous. Because the
projection from &7 X ... X S; to §; is also open and continuous, it follows that the mapping
i — supp v;(u) is also open and continuous. The theorem now follows from Remark 3.4
and the observation that open and dense sets are preserved under continuous and open
mappings and their inverses. m

4 Relation to the Literature

4.1 Relation to Heifetz and Neeman (2006)

The thrust of our results runs counter to that of Heifetz and Neeman (2006). They consider
families of incomplete-information models (7) that are consistent with common priors and
study the genericity of the full surplus extraction property within the set P of common
priors for the models in a given family. Under the additional assumption that the family
of models is what they call “closed under finite unions”, they show that P is a convex
set and that any prior of the form F = 2][:1 D(]‘Pj with a; > 0 and Fi € P for all j has the
BDP property if and only if each of the distributions F/ has the BDP property. Because
the BDP property is necessary for full surplus extraction, they conclude that, unless all
incomplete-information models T* k € K, have BDP priors, the set of priors that do not
admit full surplus extraction is geometrically and measure-theoretically generic in P.
The difference between our results and those of Heifetz and Neeman (2006) is not only
a matter of topological versus geometric or measure-theoretic genericity but also one of
genericity in the full space versus genericity in the set of priors for the models in a given
family. This restriction begs the question what can be said about the set of families for
which they obtain non-genericity of full surplus extraction relative to the set of all families

of incomplete-information models that are closed under finite unions.
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The requirement that the family be closed under finite unions can actually be quite
restrictive. In related work (Gizatulina and Hellwig (2013)), we show that, if, for any
i, the type sets T¥ of agent i in different models in the family are subsets of a complete
separable metric space and if they have non-empty interiors, then a family of models that
is closed under finite unions is at most countable. As a consequence of Theorem 2.7, one
can then show that, for a given sequence of such type sets, full surplus extraction can be
obtained for all models in a residual set of families. The set of families to which the Heifetz
and Neeman (2006) analysis applies, i.e. the set of families with at least one member for
which full surplus extraction cannot be obtained, is itself sparse in the set of all families
of models with the given family of type spaces.

4.2 Relation to Chen and Xiong (2013)

Chen and Xiong (2013) also study the genericity of (almost) full surplus extraction. They
consider common priors on the universal type space and define approximately full sur-
plus extraction in terms of expected surplus, rather than type by type. They endow the
universal type space with the product topology and the space of common priors with
the topology of weak convergence. For a special class of allocation problems and payoff
functions in which it is feasible to exclude agents on an individual basis, they show that a
residual set of priors admits approximately full surplus extraction.

The argument is, briefly, the following: Since we know from Crémer and McLean
(1988) that full surplus extraction is generic in the set of priors with finite supports, with
a topology in which priors with finite supports are dense, it follows that every prior can
be approximated by priors that admit full surplus extraction. Residualness follows by
showing that, for every ¢ > 0, the set of priors that extract all but ¢ of the expected surplus
is open. For this purpose, Chen and Xiong (2013) take an FSE prior with a sufficiently large
finite support, extend the Crémer-McLean payment function to a continuous function on
the entire space and reduce each agent’s payment by some 7 > 0. For every prior in a
neighbourhood of the FSE prior, the resulting mechanism extracts all but 27 on a set of
probability 1 — 7. On the remaining set of types, an agent’s expected net payoff may be
large (but bounded) or negative. If it is negative, the agent is excluded; exclusion involves
a loss of surplus but as long as the amount is bounded and the other agents’ incentives
are unaffected, this loss does not matter because its probability is small.

The analysis of Chen and Xiong (2013) does not actually depend on their working with
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the universal type space but goes through with abstract (Harsanyi) type spaces as well.
However, the analysis does depend on (i) the assumption that agents can be excluded on
an individual basis, (ii) the definition of approximately full surplus extraction in terms of
expected values, rather than type by type, and (iii) reliance on a topology in which the
priors with finite supports are dense.

If there is no scope for such an exclusion of individuals the argument of Chen and
Xiong (2013) cannot be used.’’ An example would the problem of providing a non-
excludable public good when there are interim participation constraints. Whereas it is
well known that, with independent private values, in this problem efficiency cannot be
achieved,* our results in this paper suggest that, with correlated private values, it is
generically possible to achieve e-efficiency, where ¢ > 0 may be taken to be arbitrarily
small. In this context, the argument of Chen and Xiong (2013) cannot be used because
one cannot exclude agents individually. One can “exclude” all participants jointly by not
providing the public good at all, but if one uses this kind of exclusion to discipline one
agent, there may be harmful side effects on the incentives of other agents.

Because exclusion may significantly reduce the surplus that is achieved, in the ap-
proach of Chen and Xiong (2013), approximately full surplus extraction is not to be ex-
pected type by type, but only in terms of expected values. This is why full surplus extrac-
tion in the sense of Chen and Xiong has to be defined in terms of priors, rather than type
by type, as in (5). Given that approximately full surplus extraction is defined in terms of
expected values only, Chen and Xiong (2013) do not need the generalized McAfee-Reny
condition, as agents who make for a violation of this condition can simply be excluded.
Without exclusion, and with a notion of (approximately) full surplus extraction type by
type, the generalized McAfee-Reny condition is necessary.

In abstract type spaces, the presumption that finite-support priors are dense excludes
the possibility that beliefs over other agents types might be topologized by the total varia-
tion norm. In the universal type space, this presumption excludes the possibility of impos-
ing the uniform weak or the uniform strategic topology. In contrast, by working directly
with the (generalized) McAfee-Reny condition, we forego the need to work with finite
approximations so our results leave more freedom for the specification of the topologies
on beliefs.

3IMore precisely, as they point out, the mechanism designer must be able to impose an outcome at which

agent i’s net payoff is zero no matter what types the other agents may have.
32Gee Giith and Hellwig (1986), Rob (1989) and Mailath and Postlewaite (1990).
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5 Concluding Remarks

Our paper greatly extends the domain of Crémer and McLean (1988) finding that in mod-
els with correlated types, it is generically possible to design incentive mechanisms so as
to extract all the available surplus. Whereas Crémer and McLean (1988) established this
finding for models with finite type sets, we allow agents’ type sets to be arbitrary, e.g.
infinite-dimensional, compact spaces.

The key to our analysis is a new mathematical result showing that the condition that
McAfee and Reny (1992) established as being necessary and sufficient for approximately
full surplus extraction in naive type spaces is satisfied by a residual set of belief functions,
i.e. of continuous functions mapping an agent’s types to his beliefs about the possible
constellations of other agents’ types. In arbitrary abstract type types, the McAfee-Reny
condition may be stronger than necessary but then its genericity implies that the gener-
alized McAfee-Reny condition, which is necessary and sufficient for approximately full
surplus extraction, is also satisfied generically.

In the universal type space, we study the possibility of surplus extraction as a property
of subsets of the universal type space that is obtained if the restriction of the Kolmorogov
mapping to the subset in question satisfies the McAfee-Reny condition. Relying on our
results for abstract type spaces, we find that the set of subsets of the universal type space
that admit full surplus extraction is residual in the class of compact subsets of the univer-
sal type space.

Our genericity results do not rely on any particular topology. We only require that the
set of an agent’s types be a compact metric space and that the topology on the space of an
agent’s beliefs be metrizable in a certain way.

Our separate analyses of the genericity of full surplus extraction in abstract and uni-
versal type spaces raise the question whether the two sets of results can be linked. The
universal type space takes its name from the proposition, proved by Mertens and Zamir
(1985), that every abstract type space can be embedded in it. It seems natural to suppose
that the image of this embedding in the universal type space is a set admitting full surplus
extraction if and only the abstract-type-space model does. However, except for the case
where the universal type space has the product topology and all beliefs have the relevant
topology of weak convergence, it is not clear how the topologies on the different spaces
are matched. In the abstract-type-space model, one might impose a topology so that, the
mapping to the universal type space is continuous, but then the question is whether this

37



topology has an interpretation of its own in the abstract-type-space model itself. Obtain-
ing a better understanding of the relation between the different topologies on the different
spaces and, by implication, of the relation between different genericity results is a problem

for future research.

Appendix A Generalizing the McAfee-Reny Result: Proof Sketch
for Theorem 2.1

The proof of Theorem 2.1 is by and large the same as the proof of Theorem 2 in McAfee
and Reny (1992), with due changes to account for the fact that T; is an arbitrary compact
metric space, rather than the unit interval, and for the fact that beliefs need not have
densities. Therefore we will not go into all the details but merely indicate where and how
the argument of McAfee and Reny must be adapted.

In the analysis of McAfee and Reny (1992), a special role is played by what they call
the set of ”(g, §)-u-shaped functions at t;,”. In the present, more general setting, an (g, 6)-
u-shaped function at t;y is a function u € C(T;) such that

(i) u(t;) > 0forallt; € T;,

(i) u(tip) <e and

(iii) u(t;) > 1 for all t; € T;\B°(tjy), where B°(t;) is the closed d-ball around t;.

The set of such (¢, §)-u-shaped function at t;y is denoted as U(g, J, tjo). This set plays a
key role in the following auxiliary result, which extends Theorem 1 of McAfee and Reny
(1992).

PROPOSITION A.1 Suppose that a set A C C(T;) satisfies:
(i) A is closed under addition and under multiplication by a positive scalar.

(ii) Forany N, x1, ..., xy € Aimpliesy € A, wherey is defined by setting y(t;) = min(xy(¢;), ...

forany t; € T;.
(iii))1, -1 € A
(iv) Foralle > 0,6 > 0, and every t;y € T;, U(g,5,tjp) N A # @.
Then A = C(T;).

The proof of Proposition A.1 is step by step the same as the proof of Theorem 1 in
McAfee and Reny (1992), except that the unit interval as the domain of functions must be
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replaced by T; and intervals of the form [tjy — J, tjy + J] must be replaced by the closed
d-balls B°(t;y) around t;.

Similarly, the proof of the necessity of condition (*) for full surplus extraction is step by
step the same as the proof of the necessity statement in Theorem 2 of McAfee and Reny,
again with the proviso that the interval [0, 1] be replaced by T; and intervals of the form
[tio — 6, tio + 6] be replaced by the closed d-balls B®(t;y) around t;.

Before turning to the proof of sufficiency of condition (*) for full surplus extraction,
we recall the following notation from McAfee and Reny. Given a belief function b;, we set

R(bl) = {y : Ti — R‘y(tz) = /Z(t,i)bi(dt,iui) for all t, for some z € C(T,Z)}
and
r(b;) == {x: T; = Rx(t;) = min{y;(¢;),...,yn(t;) } for all t;, for some N and y3, ..., yn in R(b;).

Under the given assumptions on b;, Tj, and T_;, with a topology on M (T_;) that is at least
as fine as the weak* topology, we have

R(b;) C C(T;) and r(b;) C C(T;).

Proof of the sufficiency statement in Theorem 2.1.

As in McAfee and Reny (1992), the proof is indirect. Suppose condition (*) is not
sufficient for full surplus extraction. Then there exists b; € C(T;, M(T_;)) such that (*)
holds for all #; € T; and all u € M(T;) and C(T;)\7(b;) # @, where 7(b;) is the closure
of r(b;). By Proposition A.1, C(T;)\7(b;) # @ implies that the set r(b;) violates one of
the conditions in that proposition; the only candidate is condition (iv). Thus there exist
eo > 0,60 > 0, and tjp € T; such that U(eg, do, tig) N7(b;) = @. Since R(b;) C r(b;), it
follows that U (e, do, tig) N R(b;) = @, where R(b;) is the closure of R(b;).

As discussed by McAfee and Reny (1992), one can now use the separating hyperplane
theorem and the Riesz representation theorem to assert the existence of a constant c and a
regular, countably additive, signed measure p # 0 on T; such that

/ x(8)du(t) < ¢ forall x € R(b;), and (50)
T,

/ x(8)du(t) > ¢ forall x € U(eq, &, to)- (51)
T;
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Since R(b;) is a linear subspace of C(T;), the constant ¢ must actually be zero and we must
have

/T_ x(8)du(t;) = 0 forall x € R(b;), (52)

By the definition of R(b;), it follows that

[ =ednejtan(s) = o (53)
forallz € C(T-;).

By the Jordan decomposition theorem, we may write u as the difference between two
positive measures p* and y~, at least one of which is finite. Thus, (53) can be rewritten in

// Ddbi(t|t)dp( // Ddbi(t_ilt)du (8). (54)

If z € C(T-;) is the constant function with value one, (54) specializes to the equation
V+(Ti) =u (To),

so u™ and pu~ are both finite. Moreover, there is no loss of generality in setting u™ (T;) =

the form

# (T;) = 1, so both ut and p~ belong to M(T;). (54) can therefore be rewritten in the

form
[ =g ety = [ =t dgy (). 55)
If (55) is to hold for all z € C(T_;), it must be the case that
qul.(,’l/l+) - gobi(nui)' (56)

By (*), it follows that neither ;™ nor y~ can be the point measure Jy, at t;y. For suppose
that u* = &;,. Then (56) implies @, (1~) = ¢p,(dt,) and, by (*), p= = &y, which is
incompatible with y = u™ — = # 0. By a precisely symmetric argument, = = 4, is also
impossible.

Since u~ is regular, it follows that there exists a closed set A C T;, such that p=(A) >
0,u*(A) = 0, and for some 6 € (0, &), the intersection of A with the é-ball B’ (t;y) around
tio is empty. Fixing K > 1/~ (A), we can define a step function xX by setting

(k) = 0if t; € B'(to),
K(t) = Kif t; € A,

xK(t)) = 1otherwise.
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For this step function, we find [ xX(t;)du(t;) < 1—Ku~(A) < 0. Now xX itself is not
continuous, but can be approximated by a sequence {x,}:" ; of continuous functions so
that the integrals [ x,(t;)du(t;) converge to [ xX(t;)du(t;) as n becomes large. For any
sufficiently large n, therefore, [ x,(t;)du(t;) < 0.

However, as discussed by McAfee and Reny (1992), the sequence { xn};":1 can be cho-
sen so that x, € U(eo, do, tin). By (51) and the fact that ¢ = 0, it follows that [ x,(t;)du(t;) >
0 for all n. The assumption that condition (*) is not sufficient for full surplus extraction has
thus led to a contradiction and must be false. m

Appendix B Necessity of infinite-dimensionality of the range in
Theorem 2.4

In more abstract terms, Theorem 2.4 can be restated as follows:

THEOREM B.1 Let X and Y be nonempty compact metric spaces. Assume that the topology on
M(Y) is induced by a metric that is a convex function on M(Y) x M(Y). Let £*(X;, M(Y)) be
the set of continuous functions b from X to M(Y') that satisfy condition (*), i.e., the requirement
that, for any x € X and any p € M(X),

¢p(1) = @p(0x) implies p = oy,

where 6y is the degenerate measure that assigns all mass to the singleton {x} and ¢, : M(X) —
M(Y) is defined so that, for any y € M(X)

ou(Bln) = [ b(Bl)n(dx)

for all measurable B C Y. If Y has more than finitely many elements, then £*(X;, M(Y)) is a
residual subset of the space C(X, M(Y)), i.e., E*(X, M(Y)) contains a countable intersection of
open and dense subsets of C(X, M(Y)).

In Section 2.5, we asserted that the genericity claim made in this theorem would be
false if the functions under considerations have a finite-dimensional range. This con-
trasts with the genericity of embeddings, which by the classical embedding theorem holds
whenever the dimension of the range is more than twice the dimension of the domain of
the functions under consideration. The following result provides a formal statement.
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PROPOSITION B.2 Let X be a metric space with more then N elements. Let C(X, [0,1]N) be the
space of continuous functions from X to [0,1]N, endowed with the uniform topology. There exists
an open subset U of C(X, [0,1]N) such that, for every f € U, there exists x € X such that

f(x) € co{ f(X\{x})}, (57)

i.e., the value of the function at x belongs to the convex hull of its values at points other than x.

COROLLARY B.3 For X as specified in Proposition B.2, let £*(X,[0,1]N) be the subset of those
functions f € C(X,[0,1]N) for which there exists no x € X for which (57) holds. Then the set
E*(X,[0,1]N) is not dense in C(X, [0,1]N).

Proof of Proposition B.2. Choose py, ..., pn+2 in [0,1]N so that py, ..., py1 are in general

position®* and
N+1

PN+2 = Y, &ipi, (58)

i=1
where YN a; = 1and a; > 0 for all i.
Fix a function ¢ € C(X, [0,1]N) such that, fori = 1,.., N +2,

g(xi) = pi. (59)

Then, obviously,
g(xn+2) € co{g(x1), .-, g(xn+1) ) (60)

In fact, since w; > O foralli, g(xn+2) = pn+2 belongs to the interior of co{g(x1), ..., §(xn+1) },
i.e., there exists ¢ > 0 such that the e-ball B*(pn42) around g(xn12) = pn+2 is fully con-
tained in the convex hull of g(x1) = p1, ..., §(XN+1) = PN+1-

Now, fix 7 = § and let i/ be the open 57-neighbourhood of g, i.e. the set of all functions
f such that d(f(x),g(x)) < n for all x € X, where d is the metric on [0, 1]N. We claim that,
forany f € U,

fxn+2) € co{f(x1), .., f(xn+1)}- (61)

To prove this claim, we will show that the £-ball B2 (py.2) around g(xn12) = pn2isa
subset of the convex hull of f(x1), ..., f(xn+1), i.e., that

B%(pN+2) C co{f(xl),...,f(xNH)}. (62)

}N

334 distinct vertices are in general position in [0, 1]V, if there are no m + 2 vertices (im = 1,..., N — 1) among

them that lie in an m-dimensional linear subspace of [0, 1]N .

42



(62) implies (61) because, for f € U, d(f(xn42),8(xn+2)) < 7 = 5, and therefore,

f(xn42) € B2 (pn+2).
To prove (62), we first note that

co{p1, ..., PN+1} C BT (co{f(x1), ..., f(xn+1)})- (63)

To see this, observe that, for any g € co{ps, ..., pn+1}, there exist w?,i =1,..,N+1,such

that
N+1

q9=) api
i=1
For f € U, the distance between g and the element Y- a f(x;) of co{f(x1), ..., f(xn+1)}
is less than 7, i.e. g € B7({co{f(x1), ..., f(XN+1)})-
Since B(pn+2) C co{p1, ..., PN+1}, it follows that

B (pnt2) C BT (co{f(x1), . f(xn+1)})- (64)

Now (62) follows because 17 = 5. For suppose that (62) fails so that there exists some

v € Bi(pni2)\co{f(x1),.... f(xn+1)}. Let y be the element of co{f(x1),..., f(xn41)} that
is closest to v, and let

z=0v+4+6(v—y) (65)

where ¢ is chosen so that d(z, v), the distance between z and v, is exactly 7. By the triangle
inequality,

d(pn+2,2) < d(pn+2,0) +d(0,2).

By construction, d(v,z) = n = § and d(pn2,v) < 5. Thus, z € B*(pn42). By (64), it
follows that there exists u € co{f(x1),..., fxn+1)} such that

d(z,u) <mn. (66)
Using (65), we obtain
dz,u) =d(v+6(v—y),u)=(14+6)d(v,Au+(1—-2A)y),
where A := 11@. By the definition of y and another application of (65), it follows that
d(z,u) > (14 6)d(v,y) > éd(v,y) = d(z,v) (67)

Upon combining (66) and (67), we find that d(z,v) < 7, contrary to the assumption that
d(z,v) = 5. The assumption that (62) fails has thus led to a contradiction and must be
false. m
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