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Abstract

The paper provides a speci�cation of belief systems for models of large
economies with anonymity in which aggregate states depend only on cross-
section distributions of types. For belief systems satisfying certain con-
ditions of mutual absolute continuity, the paper gives a necessary and
su¢ cient condition for the existence of a common prior. Under the given
conditions, the common prior is unique.
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1 Incomplete Information in a Large Economy
with Anonymity

In this paper, I consider the existence and uniqueness of common priors in large-
economy models with incomplete information. A large economy is represented
by an atomless measure space of agents, (A;A; �): Incomplete information is
modelled by means of an abstract type space [(T; T ); t; �; �]; where T; the space
of potential "types", is a complete separable metrice space, T is the Borel �-
algebra on T , t : A! T is a measurable mapping that assigns types to agents,
� : T ! � is a measurable mapping that speci�es an agent�s payo¤ parameters
or, more generally, his economic characteristics as a function of his type, and
� : T !M(M(T )) is a measurable mapping that speci�es an agent�s beliefs as
a function of his type. For any t; the belief �(t) is a probability distribution over
cross-section distributions of types in the economy. Thus, �(t) 2M(M(T )):

�For very helpful discussions and comments, I am grateful to Felix Bierbrauer, Christoph
Engel, Alia Gizatulina, and Christian Hellwig.
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This formulation of incomplete information departs from the personalistic
approach where each agent is assumed to receive a signal about the underlying
state of the world and uses the signal to form probabilistic beliefs about the
state of the world, about the signals received by the other agents and about the
other agents�beliefs that are induced by their signals (Harsanyi [5], Aumann
[1], Mertens and Zamir [9]). In the formulation here, agents do not form beliefs
about any particular other agents. They only form beliefs about the cross-
section distribution of the other agents�characteristics. The idea is that, in some
sense, all agents are alike and "the system" satis�es an anonymity condition by
which the outcome for any one agent depends only on his own characteristics
and on the cross-section distribution of characteristics of agents. In the large
economy, of course, the cross-section distribution of characteristics is una¤ected
by the characteristics of any one individual.
For an application, the reader is referred to the analysis of public-good pro-

vision in a large economy by Bierbrauer and Hellwig [2]. In that paper, the
payo¤ parameter �(t(a)) is an indicator of the bene�t that agent a obtains from
the public good. An anonymous social choice function determines the level of
public-good provision as a function of the cross-section distribution of public-
good preferences without taking account of which agents value the public good
highly and which ones do not. For instance, the social choice function might
stipulate that the public good be provided if and only if the cross-section mean
bene�t

R
�(t(a))d�(a) exceeds the per capita cost of provision. Or it might stip-

ulation that the public good be provided if and only if there is a su¢ ciently high
share of agents for whom the bene�t �(t(a)) exceeds the per capita provision
cost.1 A mechanism that implements such a social choice function will condi-
tion outcomes on the cross-section distribution of the messages that it receives,
without taking account of which agent is sending which message.
For the individual agent who is thinking about what the other agents are

doing, it is therefore enough to think about the cross-section distribution of
messages that the other agents are sending to "the system". In terms of an
abstract type space formulation, this is equivalent to his forming expectations
about the cross-section distribution of types and about the dependence of mes-
sages on types. His expectations about the cross-section distribution of types
are represented by his belief �(t(a)) 2 M(M(T )): His expectations about the
dependence of reports on types are given by the speci�cation of a reporting
strategy r(�) as a candidate for a Bayes-Nash equilibrium of the strategic game
that is de�ned by the mechanism implementing the social choice function.
In the large-economy model, as in the �nite-agent models, the question arises

under what conditions the beliefs �(t) can be interpreted as a result of condi-
tioning on t in a stochastic model with a common prior. I study this question for
stochastic models in which the assignments of types to agents satisfy a condi-
tional law of large numbers. The cross-section distribution of types � is treated
as the realization of a random variable ~�, which is de�ned on some probability

1The main result of Bierbrauer and Hellwig (2010) shows that if the social choice function
is to be robustly implementable and coalition-proof, the social choioce function can only
condition on population share of proponents and opponents of provision.
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space (
;F ; �) and which takes values inM(T ): For each a 2 A; the type t(a)
of agent a is also treated as the realization of a random variable ~t(�; a) that is
de�ned on (
;F ; �); the conditional distribution of this random variable given
the event ~� = � is assumed to be just equal to �: The joint dependence of the
realizations ~t(!; a) of agents�types on the underlying state ! is such that, for
almost every ! 2 
; the cross-section distribution of types well de�ned and
equal to ~�(!):
In this speci�cation, the random variable ~� plays a dual role. For each agent,

~� is the conditional distribution of the random variable ~t(�; a) that determines
the agent�s type. For the economy as a whole, ~� is the cross-section distribution
of types. The two roles of ~� are compatible with each other if the random
variables ~t(�; a); a 2 A; satisfy a conditional law of large numbers.2
In the given speci�cation, the random variable ~� has the probability distrib-

ution Q = � � ~��1: Because the conditional distribution of ~t(�; a) given ~� is just
~�; it follows that the joint distribution of ~t(�; a) and ~� is given by a measure
� 2M(T �M(T )) such that

�(Bt �B�) =
Z
B�

�(Bt) Q(d�) (1)

for all measurable sets Bt � T and B� � M(T ): I will refer to � as a prior.
The belief system � : T !M(M(T )) is compatible with the prior � if the map
~t! �(~t) is a regular conditional distribution for ~� given ~t; i.e. if

�(Bt �B�) =
Z
B1

�(B�jt) �(dt�M(T )) (2)

for all measurable sets Bt � T and B� � M(T ): In this case, I will say that �
is a common prior for the belief system �:
In the following section, I will give conditions on the belief system under

which a common prior exists and is unique. The concluding section discusses
the role of the assumptions that are used to ensure the desired result.

2 Existence and Uniqueness of a Common Prior

The problem of existence and uniqueness of a common prior in a large-economy
model with anonymity is formally equivalent to the problem of existence and
uniqueness of a common prior in a certain two-player model. In this equivalent
two-player model, player 1 has the type space T and player 2 the type space
M(T ): Belief systems are given by the functions t! �(t) and � ! �: For each

2Beginning with Judd [8] and Feldman and Gilles [4], there is an extensive literature on
the law of large numbers for large economies. Sun [15] provides a formulation in which an
assumption of essential pairwise independence yields a law of large numbers on any nonneg-
ligible subset of agents; see also Sun and Zhang [16] and Podczeck [11]. For the conditional
law of law numbers that is presumed here, the formulation of Sun [15] must be extended so
as to allow for conditional, as opposed to overall independence.
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t 2 T; the probabilistic beliefs of player 1 about the type of player 2 are given
by �(t) 2 M(M(T )); for each � 2 M(T ); the probabilistic beliefs of player 2
about the type of player 1 are given by �: A measure � 2 M(T �M(T )) is a
common prior for the belief system � in the large-economy model if and only if
it is also a common prior for the equivalent two-player model.
Existence and uniqueness of common priors in �nite-player models have

mostly been studied under the assumption that type sets are �nite.3 Under
this assumption, one easily obtains:

Proposition 1 Assume that T is a �nite set. Assume also that there exists a
�nite set D � M(T ) such that �(t) 2 M(D) for all t 2 T: If �(f�gjt) > 0 and
�(ftg) > 0 for all t 2 T and all � 2 D; a common prior for the belief system �
exists if and only if

�1(ft1g)��(f�1gjt2)��2((ft2g)��(f�2gjt1) = �(f�1gjt1)��2(ft1g)��(f�2gjt2)��1(ft2g)
(3)

for all t1; t2 in T and all �1; �2 in D: The common prior is unique.

The "only if" part of this proposition and the uniqueness claim follow from
the argument used in the proof of Lemma 2, p. 490, and Theorem III, p. 488,
in Harsanyi [5]. The "if" part of the proposition follows from Hellwig�s [7]
addendum to the result of Rodrigues-Neto [12].4 The proposition actually is a
special case of the more general Proposition 4 below.
For a large-economy model where beliefs are de�ned as probability distribu-

tions over cross-section distributions of types, the assumption of a �nite number
of possible "types" is unduly restrictive. Under this assumption, cross-section
distributions of characteristics must assign positive weights to the individual el-
ements of T: There is no room for the notion that the cross-section distributions
of characteristics might be dispersed.
In applications, however, dispersedness of cross-section distributions is a

useful property to have. With this property, there is a presumption that, for
any two arbitrarily speci�ed alternatives that people might choose from, the
set of agents who are indi¤erent between these alternatives is a null set and
can be neglected. In Bierbrauer and Hellwig [2], for instance, dispersedness of
the cross-section distribution of public-good preferences implies that, in voting
on whether the public good is to be provided or not, there is no need to take
account of abstentions.
Given these concerns, the following analysis generalizes Proposition 1 so as

to allow for uncountable type sets and for atomless cross-section distributions.
Before proceeding with the analysis itself, I note that, even with �nite type sets,
Proposition 1 is not fully general, but is restricted to belief systems satisfying

3Feinberg [3] uses a syntactic approach to characterize common priors. Among the various
semantic approaches, Morris [10] and Samet [14] rely on separation arguments, Samet [13]
on the analysis of Markov processes that can be associated with the given belief system,
Rodrigues-Neto [12] and Hellman and Samet [6] on the veri�cation of the so-called cycle
equations that are associated with the given belief system.

4See also Hellman and Samet [6].
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�(f�gjt) > 0 and �(ftg) > 0 for all t 2 T and all � 2 D:Without this restriction,
the set of conditions that are necessary and su¢ cient for the existence and
uniqueness of a common prior would be signi�cantly larger and the equations
are more complex.5 To avoid this complexity even as I turn from the �nite-type
case to the general case, I will restrict the analysis to belief systems having the
following properties:

Property 1 The beliefs �(t) 2M(M(T )) are mutually absolutely continuous,
i.e., for any t and t0 in T and any measurable set B� �M(T ); �(B�jt) = 0
if and only if �(B�jt0) = 0:

Property 2 The common support D of the measures �(t), t 2 T; has the
property that the measures � 2 D are mutually absolutely continuous,
i.e., for any � and �0 in D and any measurable set Bt � T; �(Bt) = 0 if
and only if �0(Bt) = 0:

For �nite T and D; these properties are equivalent to the positivity as-
sumptions about �(f�gjt) and �(ftg) in Proposition 1. By the Radon-Nikodym
Theorem, they are equivalent to the following properties:

Property 1* There exists a measurable function f : M(T ) � T � T ! R+
such that, for any t and t0 in T and any measurable set B� �M(T ),

�(B�jt0) =
Z
B�

f(�; t0; t) �(d�jt): (4)

Property 2* The common support D of the measures �(t) for t 2 T has the
property that there exists a measurable function g : T �D�D such that,
for any � and �0 in D and any measurable set Bt � T;

�0(Bt) =

Z
Bt

g(t; �0; �) �(dt): (5)

The following implications of Properties 1* and 2* will be useful in the
subsequent analysis..

Lemma 2 The function f in Property 1* satis�es the equation

f(�; t00; t) = f(�; t00; t0) � f(�; t0; t) (6)

for �(t)-almost all � 2 M(T ); for all t; t0; t00 in T: The function g in Property
2* satis�es the equation

g(t; �00; �) = g(t; �00; �0) � g(t; �0; �) (7)

for �-almost all t 2 T; for all �; �0; �00 in D:
5To establish the existence of a common prior, the full set of "cycle equations" de�ned in

Rodrigues-Neto [12] must be veri�ed. In contrast, the "if" part of Proposition 1 rests on the
�nding in [7] that, for belief systems satisfying �(f�gjt) > 0 and �(ftg) > 0 for all t 2 T and
all � 2 D; it su¢ ces to consider these equations for "cycles" of length four or less because
the equations for longer cycles follow automatically. Without positivity, this is not necessarily
true.
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Proof. For any measurable set B� �M(T ) and any t; t0; t00; Property 1* implies

�(B�jt00) =
Z
B�

f(�; t00; t0) �(d�jt0) =
Z
B�

f(�; t00; t0) � f(�; t0; t) �(d�jt);

so that the product f(�; t00; t0) � f(�; t0; t) is a Radon-Nikodym derivative of the
measure �(t00) with respect to the measure �(t): The �rst statement follows
because the Radon-Nikodym derivative of one measure with respect to another
is unique up to a set of measure zero. The second statement follows by a parallel
argument.

Lemma 3 The functions f and g in Properties 1* and 2* satisfy

f(�; t; t0) > 0 (8)

and
g(t; �; �0) > 0 (9)

for �0 � �(t0)-almost all (t; �) 2 T �D; for all t0 2 T and all �0 2 D:

Proof. Fix t0 2 T and �0 2 D: Upon setting t00 = t in the �rst statement of
Lemma 2, one �nds that

f(�; t; t0) � f(�; t0; t) = 1 (10)

for �(t)-almost all � 2 M(T ); for all t and t0 in T: This is only possible if
f(�; t; t0) > 0 for �(t)-almost all � 2 M(T ); for all t and t0 in T: Because
the measures �(t) and �(t0) are mutually absolutely continuous, it follows that
f(�; t; t0) > 0 for �(t0)-almost all � 2 M(T ); for all t and t0 in T: Thus, if h is
the characteristic function of the set

f(t; �)jf(�; t; t0) = 0g;

we must haveZ
T

Z
D

h(t; �) �(d�jt0) �0(dt) =
Z
D

Z
T

h(t; �) �0(dt) �(d�jt0) = 0;

hence h(t; �) = 0 and f(�; t; t0) > 0 for �0 � �(t0)-almost all (t; �) 2 T �D: The
second statement follows by a parallel argument.

Lemma 3 provides for an explicit generalization of the positivity assumptions
about �(f�gjt) and �(ftg) in Proposition 1. This provides the basis for the
following generalization of Proposition 1, the main result of this paper.

Proposition 4 Assume that the type space T and the belief system � : T !
M(M(T )) have Properties 1 and 2, and let f and g be the associated density
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functions. Then, a common prior for the belief system � exists if and only if,
for any t0 2 T and �0 2 D; the equation

g(t1; �1; �0) � f(�1; t2; t0) � g(t2; �2; �0) � f(�2; t1; t0)
= f(�1; t1; t0) � g(t1; �2; �0) � f(�2; t2; t0) � g(t2; �1; �0) (11)

holds for �0-almost all t1 and t2 in T and �(t0)-almost all �1 and �2 in D: The
common prior is unique.

Proof. Suppose that � 2 M(T � M(T )) is a common prior for the belief
system �: Let �t 2 M(T ) be the induced marginal distribution on T and
�� 2 M(M(T )) the induced marginal distribution on M(T ): Thus, for any
Bt � T and B� � D;

�(Bt �B�) =
Z
B�

�(Bt) ��(d�) =

Z
Bt

�(B�jt) �t(dt): (12)

I claim that the measure �t and the measures � 2 D are mutually absolutely
continuous: To see this, note that, for B� = D; equation (12) implies

�t(Bt) =

Z
D

�(Bt) ��(d�): (13)

By Property 2* and Fubini�s theorem, it follows that

�t(Bt) =

Z
D

Z
Bt

g(t; �; �0) �0(dt) ��(d�)

=

Z
Bt

Z
D

g(t; �; �0) ��(d�) �0(dt) (14)

for any �0 2 D. (14) immediately implies that �t is absolutely continuous with
respect to �0: By Lemma 3, (14) also implies that �0 is absolutely continuous
with respect to �t:
By an analogous argument, the measure �� and the measures �(t); t 2 T are

also mutually absolutely continuous: For Bt = T; (12) implies

��(B�) =

Z
T

�(B�jt) �t(dt)

=

Z
T

Z
B�

f(�; t; t0) �(d�jt0) �t(dt)

=

Z
B�

Z
T

f(�; t; t0) �t(dt) �(d�jt0); (15)

so that, again, absolute continuity of �� with respect to �(t0) is immediate, and
absolute continuity of �(t0) with respect to �� follows from Lemma 3.
Equations (14) and (15) also show that the Radon-Nikodym derivatives of

�� and �� with respect to �(t0) and �0 are given by the functions

't(�j�0) :=
Z
D

g(�; �; �0) ��(d�) (16)

7



and

'�(�jt0) :=
Z
T

f(�; t; t0) �t(dt): (17)

Given these �ndings, equation (12) can be rewritten in the form

�(Bt �B�) =
Z
B�

Z
Bt

g(t; �; �0) '�(�; t0) �0(dt) �(d�jt0) (18)

and

�(Bt �B�) =
Z
Bt

Z
B�

f(�; t; t0) 't(t; �0) �(d�jt0) �0(dt): (19)

Thus, for any t0 2 T and �0 2 D; the common prior � is absolutely continuous
with respect to the product measure �(t0) � �0; with a density '(�; �jt0; �0)
satisfying

'(t; �jt0; �0) = g(t; �; �0) '�(�; t0) = f(�; t; t0) 't(t; �0) (20)

for �0-almost all t 2 T and �(t0)-almost all � 2 D:
Consider the second equation in (20) with t and � replaced by di¤erent

constellations of t1, t2 2 T and �1, �2 2 D: This yields the equation

g(t1; �1; �0) '�(�1; t0) � f(�1; t2; t0) 't(t2; �0)
�g(t2; �2; �0) '�(�2; t0) � f(�2; t1; t0) 't(t1; �0)

= f(�1; t1; t0) 't(t1; �0) � g(t1; �2; �0) '�(�2; t0) (21)

�f(�2; t2; t0) 't(t2; �0) � g(t2; �1; �0) '�(�1; t0):

Because the measures �t and �0; as well as the measures �� and �(t0); are
mutually absolutely continuous, the same argument as in Lemma 3 implies that

't(t; �0) > 0 for �0-almost all t

and
'�(�; t0) > 0 for �(t0)-almost all �:

For �0-almost all t1 and t2 in T and �(t0)-almost all �1 and �2 in D; therefore,
the terms '�(�1; t0); 't(t2; �0); '�(�2; t0); and 't(t1; �0) in (21) can be divided
out. This yields (11).
To prove the "if" part of the proposition, suppose that, for some t0 2 T and

�0 2 D; equation (11) is satis�ed for �0-almost all t1 and t2 in T and �(t0)-almost
all �1 and �2 in D: By Lemma 3, there exist some t1 and �1 so that

f(�1; t1; t0) > 0; g(t1; �1; �0) > 0;

and
g(t1; �; �0) > 0 for �(t0)-almost all �:
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For any t and �; de�ne

'(t; �; t0; �0) = �(t0; �0) �
f(�; t1; t0)

f(�1; t1; t0)
� g(t; �; �0)
g(t1; �; �0)

(22)

if g(t1; �; �0) > 0 and

'(t; �; t0; �0) = 0 if g(t1; �; �0) = 0;

where

�(t0; �0) :=

�Z
D

Z
T

f(�; t1; t0)

f(�1; t1; t0)
� g(t; �; �0)
g(t1; �; �0)

�0(dt)�(d�jt0)
��1

: (23)

De�ne a measure � 2M(T �D) by setting

�(Bt �B�) :=
Z
B�

Z
Bt

'(t; �; t0; �0) �0(dt)�(d�jt0) (24)

for any measurable Bt � T and B� � D: Then, by construction,

�(Bt �B�) =

Z
B�

Z
Bt

� � f(�; t1; t0)
f(�1; t1; t0)

� g(t; �; �0)
g(t1; �; �0)

�0(dt)�(d�jt0)

=

Z
B�

Z
Bt

g(t; �; �0) �0(dt) � ��(d�)

=

Z
B�

Z
Bt

�(dt) � ��(d�); (25)

where �� 2M(D) is given by the formula

��(B�) = �(T �B�) =
Z
B�

� � f(�; t1; t0)
f(�1; t1; t0)

� 1

g(t1; �; �0)
�(d�jt0): (26)

Equation (25) shows that � satis�es the �rst equation in (12).
To verify that � also satis�es the second equation in (12), observe that, by

Lemma 3 and (11), we also have

'(t; �; t0; �0) = � �
f(�; t; t0)

f(�1; t; t0)
� g(t; �1; �0)
g(t1; �1; �0)

(27)

for �0 � �(t0)-almost all (t; �): Therefore, (24) can be rewritten as

�(Bt �B�) =

Z
Bt

Z
B�

� � f(�; t; t0)
f(�1; t; t0)

� g(t; �1; �0)
g(t1; �1; �0)

�0(dt)�(d�jt0)

=

Z
Bt

Z
B�

f(�; t; t0) �(d�jt0) � �t(dt)

=

Z
Bt

Z
B�

�(d�jt) �t(dt); (28)

9



where �t 2M(T ) is given by the formula

�t(Bt) = �(Bt �D) =
Z
Bt

� � 1

f(�1; t; t0)
� g(t; �1; �0)
g(t1; �1; �0)

�0(dt): (29)

Equation (28) implies that � also satis�es the second equation in (12). Thus,
� is a common prior for the belief system �:
To prove uniqueness, I note that, by the argument in the proof of the "only

if" part of the proposition, for any t0 2 T and �0 2 D; any common prior �
for the belief system � has a density '(�; �jt0; �0) with respect to the measure
�0 � �(t0) and, moreover, this density satis�es (20). Thus,

'(t0; �jt0; �0)
'(t; �jt0; �0)

=
g(t0; �; �0)

g(t; �; �0)
(30)

and
'(t; �0jt0; �0)
'(t; �jt0; �0)

=
f(�0; t; t0)

f(�; t; t0)
(31)

for any t; t0 2 T and any �; �0 2 D such that '(t; �jt0; �0) > 0 (and therefore
g(t; �; �0) > 0 and f(�; t; t0) > 0): Upon combining (30) and (31), one �nds that

'(t1; �1jt0; �0)
'(t2; �2jt0; �0)

=
f(�1; t2; t0)

f(�2; t2; t0)
� g(t1; �1; �0)
g(t2; �1; �0)

(32)

for all t1; t2 2 T; �1; �2 2 D such that g(t2; �1; �0) > 0 and f(�1; t2; t0) > 0: By
Lemma 3, therefore, for any common prior � and �0 � �(t0)-almost all pairs
(t1; �1); (t2; �2), the ratio of densities

'(t1;�1jt0;�0)
'(t2;�2jt0;�0) is uniquely determined by the

density functions f and g that are given by Properties 1* and 2*. Because the
integral of '(�; �jt0; �0) with respect to the measure �0 � �(t0) must be equal
to one, it follows that, up to modi�cations on a set of �(t0)� �0-measure zero,
the density function '(�; �jt0; �0) itself is uniquely determined by the functions
f and g: Uniqueness of � follows immediately.

In going through the proposition and its proof, the reader may �nd it para-
doxical that, on the one hand, the common prior is unique and, on the other
hand, in the proof of the "if" part of the proposition, the construction of the
common prior relies on particular speci�ed pairs (t0; �0) and (t1; �1): The follow-
ing remarks resolve the paradox by showing that the result of the construction
does not in fact depend on the speci�ed (t0; �0) and (t1; �1):

Remark 5 The prior that is de�ned in (22) - (24) does not depend on the
particular pair (t0; �0) that is used in the construction:

Proof. In principle, this remark already follows from the fact that the common
prior is unique. However, to clarify the role of mutual absolute continuity, I also
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give a direct argument: By Properties 1* and 2*, the right-hand side of (24)
can be written asZ

B�

Z
Bt

f(�; t1; t0) � f(�; t0; t00)
f(�1; t1; t0)

� g(t; �; �0) � g(t; �0; �
0
0)

g(t1; �; �0)
�00(dt)�(d�jt00));

where (t00; �
0
0) is any other pair in T �D: By (6) and (7), therefore, (24) can be

rewritten as

�(Bt �B�) =

Z
B�

Z
Bt

�0 � f(�; t1; t
0
0)

f(�1; t1; t00)
� g(t; �; �

0
0)

g(t1; �; �
0
0)
�00(dt)�(d�jt00))

=
�0

�(t00; �
0
0)

Z
B�

Z
Bt

'(t; �; t00; �
0
0) �

0
0(dt)�(d�jt00)): (33)

where �0 := �(t0; �0) �f(�1; t0; t00) �g(t1; �0; �00) and �(t00; �00) is given by (23) with
(t0; �0) replaced by (t00; �

0
0): For Bt = T and B� = D; we have �(Bt � B�) = 1

and
R
B�

R
Bt
'(t; �; t00; �

0
0) �

0
0(dt)�(d�jt00)) = 1: Therefore, �0 = �(t00; �00); and (33)

can be rewritten as

�(Bt �B�) =
Z
B�

Z
Bt

'(t; �; t00; �
0
0) �

0
0(dt)�(d�jt00)) (34)

for all Bt and B�: Since (34) is just (24) with (t0; �0) replaced by (t00; �
0
0); it

follows that � does not depend on the particular pair (t0; �0) that was chosen
for the construction.

Remark 6 The prior that is de�ned in (22) - (24) does not depend on the
particular pair (t1; �1) that is used in the construction:

Proof. In principle, this remark also follows from the fact that the common
prior is unique. However, to clarify the role of condition (11), I also give a direct
argument. Given that the integral of the density '(t; �; t0; �0) with respect
to the measure �0 � �(t0) is equal to one, it su¢ ces to show that the ratio
'(t; �; t0; �0)='(t

0; �0; t0; �0) is independent of (t1; �1) for �0 � �(t0)-almost all
pairs (t; �); (t0; �0) in T �D: For �0 � �(t0)-almost all pairs (t; �) and (t0; �0) in
T �D; (22) implies

'(t; �; t0; �0)

'(t0; �0; t0; �0)
=
f(�; t1; t0) � g(t1; �0; �0) � g(t; �; �0)
f(�0; t1; t0) � g(t1; �; �0) � g(t0; �0; �0)

: (35)

Moreover, from (11), with t1; t0; �; �
0 taking the role of t1; t2; �1; �2; one infers

that

f(�; t1; t0) � g(t1; �0; �0) � f(�0; t0; t0) � g(t0; �; �0)
= g(t1; �; �0) � f(�; t0; t0) � g(t0; �0; �0) � f(�0; t1; t0)

11



Thus (35) implies:

'(t; �; t0; �0)

'(t0; �0; t0; �0)
=

f(�; t1; t0) � g(t1; �0; �0) � f(�0; t0; t0) � g(t0; �; �0)
f(�0; t1; t0) � g(t1; �; �0) � f(�; t0; t0) � g(t0; �0; �0)

� f(�; t
0; t0) � g(t; �; �0)

f(�0; t0; t0) � g(t0; �; �0)

=
f(�; t0; t0) � g(t; �; �0)
f(�0; t0; t0) � g(t0; �; �0)

;

which is independent of (t1; �1):

Given the formulation of the proposition and its proof, the reader may also
wonder about the quanti�er for the pair (t0; �0) in Proposition 4: The �rst part
of the proof shows that, if a common prior exists, then the condition given in
the proposition must hold for all t0 2 T and �0 2 D: The second part of the
proof shows that, if the condition holds for some t0 2 T and �0 2 D; then a
common prior exists. The apparent incongruity is resolved by:

Remark 7 Equation (11) holds for all t0 2 T and �0 2 D and �0-almost all
t1; t2 2 T and �(t0)-almost all �1; �2 2 D if and only if it holds for some t0 2 T
and �0 2 D and �0-almost all t1; t2 2 T and �(t0)-almost all �1; �2 2 D:

Proof. As mentioned, the remark is implicit in the proof of the proposition.
For a direct proof suppose that the condition of given in the proposition holds
for some t0 2 T and �0 2 D: Multiply equation (11) by g(t1; �0; �00) �f(�1; t0; t00) �
g(t2; �0; �

0
0)�f(�2; t0; t00); for some t00 2 T and �00 2 D: By (6) and (7) the resulting

equation simpli�es to

g(t1; �1; �
0
0) � f(�1; t2; t00) � g(t2; �2; �00) � f(�2; t1; t00)

= f(�1; t1; t
0
0) � g(t1; �2; �00) � f(�2; t2; t00) � g(t2; �1; �00);

which is just (11) with t0 and �0 replaced by t00 and �
0
0:

3 Discussion

Propositions 1 and 4 involve two sets of conditions, the mutual-absolute-continuity
conditions of Properties 1 and 2 and the consistency conditions (11). The
mutual-absolute-continuity conditions impose a certain homogeneity on cross-
section type distributions and on beliefs:

� All relevant cross-section type distributions assign positive probability to
the same sets of types. There is thus no aggregate state under which a
relevant individual state can be ruled out.

� All types� beliefs assign positive probability to the same sets of cross-
section distributions of types. There is thus no person that "knows" that
a given aggregate state cannot occur.
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In the equivalent two-player game, these conditions eliminate the possibility
that one player "knows" that the other player "knows" that a certain type of the
�rst player cannot occur. Technically, any element in the information partition
intersects every element in the information partition of the other player.6 In
the large economy, these conditions, i.e., Properties 1 and 2, do not concern the
information that one participant may form about another participants�beliefs,
but, rather, a limit on the information about the aggregate state that individuals
cna infer from the observation of their types. In Bierbrauer and Hellwig [2],
this limitation is characterized by saying that the belief system is "relatively
uninformative", i.e., the information that a person has does not allow this person
rule out any aggregate state that was considered possible ex ante.
The consistency condition (11) has been well known since Harsanyi (1968).

Whereas most of the literature discusses this condition in terms of a two-player
game with �nitely many states, the analysis here involves a large economy
with anonymity, with a potentially uncountable set of states. The underly-
ing logic is the same: If (30) and (31) are combined to compute the ratio
'(t1; �1jt0; �0)='(t2; �2jt0; �0), the result must independent of whether we com-
pute this ratio from the equation

'(t1; �1jt0; �0)
'(t2; �2jt0; �0)

=
'(t2; �1jt0; �0)
'(t2; �2jt0; �0)

� '(t2; �2jt0; �0)
'(t2; �1jt0; �0)

; (36)

or from the equation

'(t1; �1jt0; �0)
'(t2; �2jt0; �0)

=
'(t1; �2jt0; �0)
'(t2; �2jt0; �0)

� '(t2; �2jt0; �0)
'(t1; �2jt0; �0)

: (37)

When applied to (36), (30) and (31) yield

'(t1; �1jt0; �0)
'(t2; �2jt0; �0)

=
f(�1; t2; t0)

f(�2; t2; t0)
� g(t1; �1; �0)
g(t2; �1; �0)

; (38)

when applied to (37),

'(t1; �1jt0; �0)
'(t2; �2jt0; �0)

=
g(t1; �2; �0)

g(t2; �2; �0)
� f(�1; t1; t0)
f(�2; t1; t0)

: (39)

For these two expressions to be compatible, one needs (11). Because the mutual-
absolute-continuity conditions of Properties 1 and 2 ensure that the densities
involved are strictly positive almost everywhere, this consistency condition hold-
ing for any t1, t2 and any �1, �2 is also su¢ cient for the existence of a common
prior when the belief system satis�es Properties 1 and 2.

6See Hellwig [7].
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